KANERVA / SDM AND RELATED MODELS / 02/02/02 / P 1

In M.H. Hassoun, ed., Associative Neural Memories: Theory and Implementation,
pp. 50-76. New York: Oxford University Press, 1993.

Copyright © 1993 and 2002 by Pentti Kanerva<pkaner va@ ni . or g>

Chapter 3
Sparse Distributed Memory and Related Models

Pentti Kanerva

3.1. Introduction

This chapter describes one basic model of associative memory, cdled the sparse
distributed memory, and rel atesit to other modelsand circuits: to ordinary computer
memory, to correlation-matrix memories, to feed-forward artificial neural nets, to
neural circuitsin the brain, and to associative-memory models of the cerebellum.
Presenting the various designswithin one framework will hopefully help the reader
see the similarities and the differences in designs that are often described in
different ways.

3.1.1. SparseDistributed Memory asa Model of Human Long-Term Memory

Sparse Distributed Memory (SDM) was devel oped as a mathematical model of
human long-term memory (Kanerva 1988). The pursuit of asimpleidealed to the
discovery of the model, namely, that the distances between conceptsin our minds
correspond to the distances between points of a high-dimensional space. In what
follows, ‘ high-dimensional’ means that the number of dimensionsisat least in the
hundreds, although smaller numbers of dimensions are often found in examples.

If aconcept, or a percept, or amoment of experience, or a piece of information
in memory—a point of interest—is represented by a high-dimensional (or “long”)
vector, the representation need not be exact. This follows from the distribution of
points of a high-dimensional space: Any point of the space that might be a point of
interest isrelatively far from most of the space and from other points of interest.
Therefore, apoint of interest can be represented with considerable slop beforeitis
confused with other points of interest. In this sense, long vectors are fault-tolerant
or robust, and a device based on them can take advantage of the robustness.

This corresponds beautifully to how humans and animal s with advanced sensory
systems and brains work. The signals received by us at two different times are
hardly ever identical, and yet we can identify the source of the signal as a specific

KANERVA / SDM AND RELATED MODELS / 02/02/02 |/ P.2

individual, object, place, scene, thing. The representations used by the brain must
allow for such identification, in fact, they must make the identification nearly
automatic, and high-dimensional vectors asinternal representations of things do
that.

Another property of high-dimensional spaces also hasto do with the distances
between points. If we take two points (of interest) at random, they arerelatively far
from each other, on the average: they are uncorrelated. However, there are many
points between the two that are close to both, in the sense that the amount of space
around an intermediate point—in a hypersphere—that contains both of the two
original pointsisvery small. This corresponds to the relative ease with which we
can find a concept that links two unrelated concepts.

Strictly speaking, a mathematical space need not be a high-dimensional vector
gpaceto have the desired properties; it needsto be ahuge space, with an appropriate
similarity measure for pairs of points, but the measure need not define ametric on
the space.

The important properties of high-dimensional spaces are evident even with the
simplest of such spaces—that is, when the dimensions are binary. Therefore, the
gparse distributed memory model was developed using long (i.e., high-
dimensional) binary vectorsor words. The memory isaddressed by such words, and
such words are stored and retrieved as data.

The following two examples demonstrate the memory’ s robustness in dealing
with approximate data. The memory workswith 256-bit words: it is addressed by
them, and it stores and retrieves them. On top of Figure 3.1 are nine similar (20%
noisy) 256-bit words. To help us compare long words, their 256 bits are laid on a
16-by-16 grid, with 1sshownin black. The noise-free prototype word was designed
in the shape of acircle within thegrid. (This example is confusing in that it might
be taken to imply that humans recognize circles based on stored retinal images of
circles. No such claim isintended.) The nine noisy words were stored in a sparse
distributed memory autoassociatively, meaning that each word was stored with
itself asthe address. When atenth noisy word (bottom |eft), different from the nine,
was used as the address, arelatively noise-free 11th word was retrieved (bottom
middle), and with that as the address, a nearly noise-free 12th word was retrieved
(bottom right), which in turn retrieved itself. This example demonstrates the
memory’s tendency to construct a prototype from noisy data.

((FIGURE 3.1. Nine noisy words are stored ...))

Figure 3.2 demonstrates sequence storage and recall. Six words, shaped as
Roman numerals, are stored in alinked list: | is used as the addressto storelll, 1l is
used asthe addressto store l11, and so forth. Any of thewords |-V can then be used
to recall the rest of the sequence. For example, 111 will retrieve IV will retrieve V
will retrieve V1. Theretrieval cuefor the sequence can be noisy, as demonstrated at

KANERVA / SDM AND RELATED MODELS / 02/02/02 / P.3

the bottom of the figure. Asthe retrieval progresses, aretrieved word, which then
serves as the next address, is less and less noisy. This example resembles human
ability to find afamiliar tune by hearing apiece of it in the middle, and to recall the
rest. Thiskind of recall appliesto a multitude of human and animal skills.

((FIGURE 3.2. Recalling a stored sequence ...))

3.2. SDM asa Random-Access Memory

Except for the lengths of the address and data words, the memory resembles
ordinary computer memory. It is a generalized random-access memory for long
words, aswill be seen shortly, and its construction and operation can be explained
in terms of an ordinary random-access memory.We will start by describing an
ordinary random-access memory.

3.2.1. Random-Access Memory

A random-access memory (RAM) isan array of M addressabl e storage registers or
memory locations of fixed capacity. A location’splaceinthememory array iscalled
the location’ saddress, and the value stored in the register is called the location’s
contents. Figure 3.3 represents such a memory, and a horizontal row through the
figure represents one memory location. The active location is shown shaded. The
addresses of the locations are on the left, in matrix A, and the contents are on the
right, in matrix C.

((FIGURE 3.3. Organization of a random-access memory.))

A memory with amillion locations (M = 220) is addressed by 20-bit words. The
length of the addresswill be denoted by N (N =20 in Fig. 3.3). The capacity of a
location is referred to as the memory’sword size, U (U = 32 bitsin Fig. 3.3), and
the capacity of the entire memory is defined conventionally as the word size
multiplied by the number of memory locations (i.e., M x U hits).

Storage and retrieval happen oneword at atime through three special registers:
the addressregister, for an N-bit address into the memory array; the word-in
register, for aU-bit word that is to be stored in memory; and theword-out register,
for aU-bit word retrieved from memory. To store theword w in location x (the
location’s address x is used as a name for the location), x is placed in the address
register, w is placed in the word-in register, and a write-into-memory command is
issued. Consequently, w replaces the old contents of location x, while all other
locations remain unchanged. To retrieve the word w that was last stored in location
X, X is placed in the address register and a read-from-memory command is issued.
Theresult w appearsin the word-out register. The figure shows (apossible) state of
the memory after w = 010...110 has been stored in location x = 000...011 (the
word-in register holds w) and then retrieved from the samelocation (the address

KANERVA / SDM AND RELATED MODELS / 02/02/02 /| P4

register holds x).

Between matrices A and C inthefigure isan activation vector, y. Its components
are Os except for one 1, which indicates the memory location that is selected for
reading or writing (i.e., the location’s address matches the address register). In a
hardware realization of arandom-access memory, alocation's activation is
determined by an address-decoder circuit, so that the address matrix A isimplicit.
However, the contents matrix C isan explicit array of 220 x 32 one-hit registers or
flip-flops.

3.2.2. Sparse Distributed Memory

Figure 3.4 represents a sparse distributed memory. From the outside, itislikea
random-access memory: it has the same three special registers—address, word-in,
and word-out—and they are used in the same way when words are stored and
retrieved, except that these registers are large (e.g., N = U = 1,000).

((FIGURE 3.4. Organization of a sparse distributed memory.))

Construction. Theinternal organization of sparsedistributed memory, likewise, is
an array of addressable storage locations of fixed capacity. However, since the
addresses are long, it isimpossible to build a hardware location—a hard location,
for short—for each of the 2\ addresses. (Neither isit necessary, considering the
enormous capacity that such amemory would have.)

A memory of reasonable size and capacity can be built by taking areasonably
large sample of the 2N addresses and by building a hard location for each address
inthe sample. Let M be the size of the sample: we want amemory with M locations
(M =1,000,000 in Fig. 3.4). The sample can be chosen in many ways, and only
some will be considered here.

A good choice of addressesfor the hard | ocations depends on the datato be stored
inthe memory. The data consist of the words to be stored and of the addresses used
in storing them. For simplicity, we assume in the basic model that the data are
distributed randomly and uniformly (i.e., bits are independent of each other, and Os
and 1s are equally likdy, both in the words being stored and in the addresses used
for storing them). Then the M hard locations can be picked at random; that isto say,
we can take a uniform random sample, of size M, of al N-bit addresses. Such a
choice of locationsis shown in Figure 3.4, where the addresses of the locations are
givenin matrix A and the contents are given in matrix C, and where a row through
the figure represents a hard location, just asin Figure 3.3 (row A, of matrix A is
the mth hard address, and C,,, is the contents of location A, aswith RAM, we use
A, to name the mth location).

Activation. Inarandom-access memory, to store or retrieve aword with x asthe
address, x is placed in the (20-bit) address register, which activates location x. We

KANERVA / SDM AND RELATED MODELS / 02/02/02 / P.5

say that the addressregister points to location x, and that whatever location the
address register pointsto is activated. This does not work with a sparse distributed
memory because its (1,000-bit) address register never—practically never—points
to ahard location because the hard locations are so few compared to the number of
possible addresses (e.g., 1,000,000 hard addresses vs. 21:%%0 possible addresses;
matrix A is an exceedingly sparse sampling of the address space).

To compensate for the extreme sparseness of the memory, aset of nearby
locationsis activated at once, for example, all the locationsthat are within acertain
distance from x. Since the addresses are binary, we can use Hamming distance,
which isthe number of places at which two binary vectors differ. Thus, in a sparse
distributed memory, the mth location is activated by x (which isin the address
register) if the Hamming distance between x and the location’s address A, is bel ow
or equal to athreshold valueH (H standsfor a[Hamming] radius of activation). The
threshold ischosen so that but asmall fraction of the hard locations are activated by
any given x. When the hard addresses A are a uniform random sample of the N-
dimensional address space, the binomial distribution with parameters N and 1/2 can
be used to find the activation radius H that correspondsto a given probability p of
activating alocation. Notice that, in arandom-access memory, alocation is
activated only if its address matches x, meaning that H = 0.

Vectorsd andy in Figure 3.4 show the activation of locations by addressx. The
distance vector d gives the Hamming distances from the address register to each of
the hard locations, and the 1s of the activation vector y mark the locations that are
close enough to x to be activated by it: y,,= 1if d,,< H, and y,,, = 0 otherwise, where
dy=h(x, Ay isthe Hamming distancefrom x to location A, The number of 1sin
y therefore equals the size of the set activated by x.

Figure 3.5 isanother way of representing the activation of locations. The large
circle represents the space of 2N addresses. Each tiny squareisahard location, and
its position within the large circle represents the location’ s addresses. The small
circle around x includes the locations that are within H bits of x and that therefore
are activated by x.

((FIGURE 3.5. Address space, hard locations, and the set ...))

Storage. To store U-bit words, ahard location has U up—down counters. Therange
of acounter can be small, for example, the integersfrom—15to 15. The U counters
for each of the M hard locations constitute the M x U contents matrix, C, shown on
theright in Figure 3.4, and they correspond to the M x U flip-flops of Figure 3.3.
We will assumethat all counters are initially set to zero.

When x is used as the storage address for the word w, w is stored in each of the
locations activated by x. Thus, multiple copies of w are stored; in other words, w is
distributed over a (small) number of locations. Theword w is stored in, or written
into, an active location as follows: Each 1-bit of w increments, and each O-bit of w

KANERVA / SDM AND RELATED MODELS / 02/02/02 /| P.6

decrements, the corresponding counter of thelocation. This isequivalent to saying
that theword w' of —1sand 1sis added (vector addition) to the contents of each
active location, where w' is gotten from w by replacing Os with —1s. Furthermore,
the countersin C are not incremented or decremented past their limits (i.e.,
overflow and underflow are lost).

Figure 3.4 depicts the memory after the word w = 010...110 (in the word-in
register) has been stored with x = 100...101 asthe address (in the address register).
Severa locations are shown as selected, and the vector w™ =
(-1,1,-1,...,1,1, 1) hasbeen added to their contents. The figure also shows that
many |locations have been selected for writing in the past (e.g., the first location has
nonzero counters), that the last location appears never to have been selected, and
that w appearsto bethefirst word written into the selected | ocation near the bottom
of the memory (the location containsw'). Notice that a positive value of a counter,
+5, say, tells that five more 1sthan Os have been stored init; similarly, -5 tellsthat
five more Os than 1s have been stored (provided that the capacity of the counter has
never been exceeded).

Retrieval. When x isused astheretrieval address, the locations activated by x are
pooled asfollows: their contents are accumulated (vector addition) into avector of
U sums, s, and the sums are compared to athreshold value O to get an output vector
z, which then appears in the word-out register (z, = 1iff 5,> 0; sand z are below
matrix C in Fig. 3.4). This pooling constitutes amajority rule, in the sense that the
uth output bitis1if, and only if, more 1sthan Os have been stored in the uth counters
of the activated locations; otherwise, the output bit is 0.

In Figure 3.4 the word retrieved, z, isthe same as, or very similar to, theword w
that was stored, for the following reason: The same x is used as both storage and
retrieval address, so that the same set of |ocationsis activated both times. In storing,
each active location receives one copy of W', as described above; in retrieving, we
get back all of them, plus afew copies of many other words that have been stored.
This biases the sums, s, in the direction of w’, so that w is alikely result after
thresholding. This principle holds even when the retrieval addressis not exactly x
but is closetoit. Then we get back most of the copies of w’.

Theideas of storing multiple copies of target words in memory, and of retrieving
the most likely target word based on the majority rule, are found aready in the
redundant hash addressing method of Kohonen and Reuhkala (1978; Kohonen
1980). The method of realizing these ideas in redundant hash addressing is very
different from their realization in a sparse distributed memory.

Retrieval and memory capacity will be analyzed statistically at the end of the next
section, after a uniform set of symbols and conventions for the remainder of this
chapter has been established. We will note here, however, that the intersections of
activation sets play akey rolein the analysis, for they appear as weights for the

KANERVA / SDM AND RELATED MODELS / 02/02/02 /| P.7

words stored in the memory when the sum vector sis eval uated.

Random-Access Memory as a Special Case .One more comment about a
random-access memory: Proper choice of parametersfor a sparse distributed
memory yields an ordinary random-access memory. First, the address matrix A
must contain all 2N addresses; second, the activation radius H must be zero; and,
third, the capacity of each counter in C must be one bit. The first condition
guarantees that every possible address x pointsto at |east one hard location. The
second condition guaranteesthat only alocation that is pointed to is activated. The
third condition guarantees that when aword iswritteninto alocation, it replacesthe
location’s old contents, because overflow and underflow are lost. In memory
retrieval, the contentsof all activelocations are added together; inthis case, thesum
isover one or more locations with hard addressx. Any particular coordinate of the
sum is zero if the word last written (with address x) hasa 0 in that position; and it
ispositiveif theword hasa 1, so that after thresholding we get the word last written
with address x. Therefore, the sparse distributed memory is a generalization of the
random-access memory.

Parallel Realization. Storing aword, or retrieving aword, in a sparse distributed
memory involves massive computation. The contents of the addressregister are
compared to each hard address, to determine which locationsto activate. For the
model memory with amillion locations, this means computing one-million
Hamming distances involving 1,000 bits each, and comparing the distancesto a
threshold. Thisisvery time-consuming if done serially. However, the activations of
the hard locations are independent of each other so that they can be computed in
parallel; once the addressis broadcast to al the locations, million-fold parallelism
ispossible. The addressing computation that determines the set of active locations
corresponds to address decoding by the address-decoder circuit in arandom-access
memory.

In storing aword, each column of countersin matrix C (see Fig. 3.4) can be
updated independently of all other columns, so that thereis an opportunity for
thousand-fold parallelism when 1,000-bit words are stored. Similarly, in retrieving
a 1,000-bit word, there is an opportunity for thousand-fold parallelism. Further
parallelism is achieved by updating many locations at once when aword is stored,
and by accumulating many partial sumsat oncewhen aword isretrieved. It appears
that neural circuitsin the brain are wired for these kinds of parallelism.

3.3. SDM asaMatrix Memory

The construction of the memory was described above in terms of vectors and
matrices. We will now seethat its operation is described naturally in vector—matrix
notation. Such descriptionis convenient in relating the sparse distributed memory

KANERVA / SDM AND RELATED MODELS / 02/02/02 / P.8

to the correlation-matrix memories described by Anderson (1968) and Kohonen
(1972)—see also Hopfield (1982), Kohonen (1984), Willshaw (1981), and Chapter
1 by Hassoun—and in relating it to many other kinds of artificial neural networks.
The notation will also be used for describing variations and generalizations of the
basic sparse distributed memory model.

3.3.1. Notation

In comparing the memory to a random-access memory, it is convenient to express
binary addresses and words in Os and 1s. In comparing it to a matrix memory,
however, it is more convenient to express them in —1sand 1s (also called bipolar
representation). Thistransformation is already implicit in the storage algorithm
described above: abinary word w of Osand 1sisstored by adding the corresponding
word w' of —1sand 1sinto (the contents of) the active locations. From here on, we
assume that the binary components of A and x (and of w and z) are—1sand 1s, and
whether bit refersto 0 and 1 or to —1 and 1 will depend on the context.

How is the activation of alocation determined after this transformation? In the
same way as before, provided that Hamming distance is defined as the number of
places at which two vectors differ. However, we can aso use the inner product
(scalar product, dot product) of the hard addressA , and the address register x to
measuretheir similarity: d=d(Ap, X) = A, X. Itrangesfrom =N to N (d = N means
that the two addresses are most similar—they are identical), and it relates linearly
to the Hamming distance, which rangesfrom 0 to N (O meansidentical). Therefore,
Hamming distance h(A,, X) < H if, and only if, A, (Xx=N-2H (=D). Ina
computer simulation of the memory, however, the exclusive-or (XOR) operation on
addresses of Osand 1susually resultsin the most efficient computation of distances
and of the activation vector y.

The following typographic conventions will be used:

S italic lowercase for a scalar or afunction name.
S italic uppercase for ascalar upper bound or athreshold.
% bold lowercase for a (column) vector.
v; ith component of avector, ascalar.
M bold uppercase for amatrix.
M; ithrow of amatrix, a (column) vector.
M jthcolumn of amatrix, a(column) vector.
ij Scalar component of amatrix.

IVII

MT transpose of amatrix (or of avector).

0 scalar (inner) product of two vectors: u [V = u' v.
matrix (outer) product of two vectors: ulJv = uv'.

n =1,2,3,...,N indexinto thebits of an address.

KANERVA / SDM AND RELATED MODELS / 02/02/02 / P.9

u
t
m

=1,23,...,U indexinto the bitsof aword.
=1,2,3,...,T indexintothedata
=1,2 3, ..., M indexintothe hard locations.

3.3.2. Memory Parameters

The sparse distributed memory, asamatrix memory, is described below in terms of
its parameters, progressing with the information flow from upper left to lower right
in Figure 3.4. Sample memory refers to a memory whose parameter val ues appear
in parentheses in the descriptions below, asin “(e.g., N = 1,000)".

N

The external dimensions of the memory are given by:

Address length; dimension of the address space; input dimension (e.g.,

N = 1,000). Small demonstrations can be made with N as small as 25, but N
> 100 isrecommended, asthe propertiesof high-dimensional spaceswill then
be evident.

Word length; the number of bits (=1sand 1s) in the words stored; output
dimension (e.g., U = 1,000). The minimum, U = 1, correspondsto classifying
the datainto two classes. If U = N, it ispossible to store words
autoassociatively and to store sequences of words as pointer chains, as
demonstrated in Figures 3.1 and 3.2.

The data set to be stored—thetraining set (X, W)—isgiven by:

T
X

w

Training-set size; number of elementsin the data set (e.g., T = 10,000).
Data-address matrix; T training addresses; T x N —1sand 1s(e.g., uniform
random).

Data-word matrix; T training words; T x U -1sand 1s(e.g., uniform
random). Autoassociative data (self-addressing) meansthat X = W, and
sequence data means that X; = W;_ 1 (t>1).

The memory’s internal parameters are:

M

Memory size; number of hard locations (e.g., M = 1,000,000). Memory needs
to be sufficient for the data being stored and for the amount of noise to be
tolerated inretrieval. Memory capacity islow, sothat T should be 1-5 percent
of M (T isthe number of stored patterns; storing many noisy versions of the
same pattern [cf. Fig. 3.1] counts as storing one pattern, or asstoring few).
Hard-address matrix; M hard addresses, M x N —1sand 1s(e.g., uniform
random). This matrix is fixed. Efficient use of memory requires that A
correspond to the set of data addresses X (see Sec. 3.8 on SDM research).
Probability of activation (e.g., p = 0.000445; “ideally,” p = 0.000368). This
important parameter determines the number of hard locationsthat are

KANERVA / SDM AND RELATED MODELS / 02/02/02 / P. 10

activated, on the average, by an address, which, in turn, determines how well
stored words are retrieved. The best p maximizesthe signal (due to the target
word that is being retrieved) relative to the noise (dueto all other stored
words) in the sum, s, and is approximately (2MT) Y2 (see end of this section,
where signal, noise, and memory capacity are discussed).

Radius of activation (e.g., H = 447 bits). The binomial distribution or its
normal approximation can be used to find the (Hamming) radiusfor agiven
probability. For the sample memory, optimal p is0.000368, so that about 368
locations should be activated at atime. Radius H = 446 captures 354
locations, and H = 447 captures 445 |ocations, on the average. We choose the
|atter.

Activation threshold on similarity (e.g., D = 106). Thisthreshold isrelated to
the radius of activation by D = N — 2H, so that D = 108 and D = 106
correspond to the two values of H given above.

Range of a counter intheM x U contents matrix C (e.g., ¢ ={-15, -14,
-13,...,14,15}). If therangeisonebit (c={0, 1}), the contents of alocation
are determined wholly by the most-recent word written into the location. An
8-hit byte, an integer variable, and a floating-point variable are convenient
counters in computer simulations of the memory.

The following variables describe the memory’s state and operation:

X

Storage or retrieval address; contents of the addressregister; N —1sand 1s
(e.0., X =Xyp.

Similarity vector; M integersin{—N,-N+2,-N+ 4, ..., N -2, N}. Since the
similarity between the mth hard address and the address register is given by
their inner product A, X (see Sec. 3.3.1 on Notation), the similarity vector
can be expressed asd = Ax.

Activation vector; M Osand 1s. The similarity vector d is converted into the
activation vector y by the (nonlinear) threshold function y defined by y(d) =
y, wherey,,= 1if d,,,= D, and y,,, = 0 otherwise. The number of 1siny, |y/,
issmall compared to the number of Os |y| =pM); the activation vector isa
very sparse vector in avery-high-dimensional space. Notice that thisisthe
only vector of Osand 1s; all other binary vectors consist of —1sand 1s.
Input word; U —1sand 1s(e.g., w = W,).

Contents matrix; U x M up—down counters with range c, initia value usually
assumed to be 0. Since the word w is stored in active location A, (i.€., when
Ym = 1) by adding w into the location’s contentsC,,,, it isstored in all active
locationsindicated by y by adding the (outer-product) matrix y [1w (most of
whoserowsare0) into C, sothat C := C +y[Jw, where := means substitution,
and where addition beyond the range of a counter isignored. Thisis known

KANERVA / SDM AND RELATED MODELS / 02/02/02 / P. 11

as the outer-product, or Hebbian, learning rule.

S Sum vector; U sums (each sum has[at most] |y| nonzeroterms). Becausethe
sum vector is made up of the contents of the active locations, it can be
expressed ass= C'y. The U sums give us the final output word z, but they
also tell us how reliable each of the output bitsis. The further asum isfrom
the threshold, the stronger is the memory’ s evidence for the corresponding
output bit.

z Output word; U —1sand 1s. The sum vector sis converted into the output
vector z by the (nonlinear) threshold function z defined by z(s) = z, where z,
=1if s,>0, and z, = -1 otherwise.

In summary, storing the word w into the memory with x as the address can be
expressed as

C:=C+yAx)[w
and retrieving the word z corresponding to the address x can be expressed as
z=z(CTy(AX))
3.3.3. Summary Specification

The following matrices describe the memory’ s operation on the data set—the
training set (X, W)—as awhole:

D T x M matrix of similarities corresponding to the data addresses X: D =
(AXT = XAT.

Y Corresponding T x M matrix of activations: Y =y(D).

S T xUmatrix of sumsfor thedataset: S=YC.

Z Corresponding T x U matrix of output words: Z = z(S) = z(YC).

If the initial contents of the memory are 0, and if the capacities of the counters
are never exceeded, storing the T-element data set yields memory contents

T T
C =3 YWy = 5 y(AX) OW
t=1 t=1

This expression for C follows from the outer-product learning rule (see C above),
asitisthe sum of T matrices, each of which represents an item in the data set.
However, C can be viewed equivalently asamatrix of M x U inner products Cy, ,
of pairs of vectors of length T. One set of these vectorsisthe M columns of Y, and
the other set isthe U columns of W, so that Cyy,, = Y 1, OV, and

C=YTW =y(AX"W

The accuracy of recall of thetraining set after it has been stored in memory, is then

KANERVA / SDM AND RELATED MODELS / 02/02/02 / P. 12

given by
Z-W=2z(YC)-W
=z(YYTW) - W

Thisform is convenient in the mathematical analysis of the memory. For example,
it is readily seen that if the T rows of Y are orthogonal to one another, YY T isa
diagonal matrix approximately equal to pM1 (I isthe identity matrix), so that
z(YYTW) = W and recall is perfect. Notice that the rowsof Y for the sample
memory are nearly orthogonal to one another, and that the purpose of addressing
through A isto produce (nearly) orthogonal activation vectorsfor most pairs of
addresses, which isaway of saying that the sets of |ocations activated by dissmilar
addresses overlap aslittle as possible.

3.3.4. Relation to Correation-Matrix Memories

The M x U inner products that make up C are correlations of a sort: they are
unnormalized correlations that reflect agreement between the M variables
represented by the columnsof Y, and the U variables represented by the columns of
W. If the columns were normalized to zero mean and to unit length, their inner
products would equal the correlation coefficients used commonly in statistics.
Furthermore, the inner products of activation vectors (i.e., unnormalized
correlations) Y [y serve asweights for the training wordsin memory retrieval,
further justifying the term correlation-matrix memory.

The Y -variables are derived from the X-variables (each Y -variable compares the
data addresses X to a specific hard address), whereas in the original correlation-
matrix memories (Anderson 1968; Kohonen 1972), the X-variables are used
directly, and the variables are continuous. Changing from the X-variablesto the Y -
variables means, mathematically, that the input dimension isblownway up (froma
thousand to amillion); in practice it means that the memory can be made arbitrarily
large, rendering its capacity independent of the input dimension N. The idea of
expanding the input dimension goes back at |east to Rosenbl&t’s (1962) a-
perceptron network.

3.3.5. Recall Fiddlity (¢)

Wewill now look at the retrieval of words stored in memory, that is, how faithfully
are the stored words reconstructed by the retrieval procedure. The asymptotic
behavior of the memory, as the input dimension N grows without bound, has been
analyzed in depth by Chou (1989). Specific dimension N is assumed here, and the
analysisis simple but approximate. The analysisfollows one given by Jaeckel
(1989a) and uses some of the same symbols.

What happens when we use one of the addresses, say, the last data address X+, to

KANERVA / SDM AND RELATED MODELS / 02/02/02 / P. 13

retrieve aword from memory; how close to the stored word W+ is the retrieved
word Z+? The output word Z is gotten from the sum vector Sy by comparing itsU
sums to zero. Therefore, we need to find out how likely will a sum in St be on the
correct side of zero. Since the data are uniform random, all columns of C havethe
same statistics, and al sumsin Sy have the same statistics. So it sufficesto ook at
asingle coordinate of the datawords, say, the last, and to assume that the last bit of
the last dataword, W, is1. How likely is Sy > 0 if Wy, = 1? Thislikelihood is
called thefidelity for asingle bit, denoted here by ¢ (phi for ‘fidelity’), and we now
proceed to estimate it.

The sum vector Sy retrieved by the address X+ isasum over the locations
activated by X+. The locations are indicated by the 1s of the activation vector Y,
sothat Sy=Y1' C, whichequalsY+"YTW (that C = Y TW wasshown above). The
last coordinate of the sum vector isthen Sy = Y1 Cy = Y1 YTWy, =
(YY) "Wy = (YY) OWy, which shows that only the last bitsof the data words
contribute to it. Thus, the Uth bit-sum isthe (inner) product of two vectors, YY 1
and Wy, where the T-vector Wy, consists of the stored bits (the last bit of each
stored word), and the T components of Y'Y 1 act as weights for the stored bits.

The weights YY1 have a clear interpretation in terms of activation sets and their
intersections or overlaps: they equal the sizes of the overlaps. Thisisillustrated in
Figure 3.6 (cf. Fig. 3.5). For example, sincethe 1sof Y, and Y+ mark the locations
activated by X and X+, respectively, the weight Y Y 1 for the tth data word in the
sum Sy equals the number of locations activated by both X; and X+. Because the
addresses are uniform random, thisoverlap is p2M locations on the average, where
p isthe probability of activating alocation, except that for t = T the two activation
sets are the same and the overlap is compl ete, covering pM locations on the average.

((FIGURE 3.6. Activation overlaps as weights for stored words.))

In computing fidelity, we will abbreviate notation asfollows: Let B; (= W,) be
thelast bit of thetth dataword, let Ly =Y [1 beitsweight in the sum Sy, and let
2 (= Sry) bethelast bit sum. Regard the bitsB; and their weightsL, astwo sets of
T random variables, and recall our assumption that addresses and data are uniform
random. Then the bits B; are independent —1s and 1swith equal probability (i.e.,
mean E{B;} = 0), and they are also independent of the weights. The weightsL,,
being sizes of activation overlaps, are nonnegative integers. When activation islow,
asit isin the sample memory (p = 0.000445), the weights resembl e independent
Poisson variables: thefirst T — 1 of them have amean (and variance Var{ L;} =)
E{L} = A=A =p®M and thelast hasamean (and variance Var{ L} =) E{L} = A1
=\ = pM (i.e,, complete overlap). For the sample memory these values are: mean
activation A = pM = 445 |ocations (out of amillion), and mean activation overlap A
= p?M = 0.2 location (t < T). We will proceed asif the weights L, were independent
Poisson variables, and hence our result will be approximate.

KANERVA / SDM AND RELATED MODELS / 02/02/02 / P. 14

We are assuming that the bit we are trying to recover equals 1 (i.e.,By = Wy, =
1); by symmetry, the analysis of By = —1 isequivaent. The sum X isthen the sum
of T products LBy, and its mean, or expectation, is

T-1
W=E(5} = J E{LB} +E{Lr (1}

t=1
=E{L}
=N

because independence and E{ B;} = Oyield E{L{B;} = 0whent < T. The mean sum
can beinterpreted asfollows: it containsall A (= 445) copiesof thetarget bit Bt that
have been stored and they reinforce each other, while the other

(T=1)A (= 2,000) bitsin Z tend to cancel out each other.

Retrieval is correct when the sum Z isgreater than 0. However, random variation
can make 2 < 0. Thelikelihood of that happening, depends on the variance o?of the
sum, which variance we will now estimate. When the terms are approximately
independent, their variances are approximately additive, so that

0% =Var{=} = (T - IVar{L,By} + Var{Ly 1}
The second varianceis simply Var{ L1} = A. Thefirst variance can be rewritten as
Var{L1By} = E{L1°B1%} - (E{L1B1})?

=E{L?
becauise B;? = 1, and because E{ LB} = 0 as above. It can be rewritten further as

= Var{Ly} + (E{Lq})?

=\ +)\?
and we get, for the variance of the sum,

o’=(T-1)A+A)+A

Substituting p?M for A and pM for A, approximating T — 1 with T, and rearranging
finally yields

0% =Var{Z} = pM[1 + pT(1 + p°M)]

We can now estimate the probability of incorrect recal, that is, the probability
that > < 0 when Bt = 1. Wewill use the fact that if the productsL;B; are T
independent random variables, their sum Z tends to the normal (Gaussian)
distribution with mean and variance equal to those of . We then get, for the

KANERVA / SDM AND RELATED MODELS / 02/02/02 / P. 15

probability of a single-bit failure,
Pr{Z<0]|y 0} = ®(-Wo)

where @ isthe normal distribution function; and for the probability of recalling a
bit correctly, or bit-fidelity ¢, we get 1 — ®(—p/o), which equals ® (/o).

3.3.6. Signal (), Noise (o), and Probability of Activation (p)

We can regard the mean value 1 (= pM) of the sum X as signal, and the variance 0

(= pM[1 + pT(1 + p®M)]) of the sum as noise. The standard quantity p = p/c isthen
asignal-to-noiseratio (rho for ‘ratio’) that can be compared to the normal
distribution, to estimate bit-fidelity, as was done above:

¢ = Pr{ bit recalled correctly} = ®(p)

The higher the signal-to-noise ration, the more likely are stored words recalled
correctly. Thispointsto away to find good valuesfor the probability p of activating
locations and, hence, for the activation radius H: We want p that maximizes p. To
find thisvalue of p, itisconvenient to start with the expression for p2 and to reduce
itto

pM

2 = y2/g2=~
P H 1+ pT(1+p2M)

Taking the derivative with respect to p, setting it to 0, and solving for p gives
_ 1
3/2MT

asthe best probability of activation. This value of p was mentioned earlier, and it
was used to set parameters for the sample memory.

The probability p= (2MT)~3 of activating alocation isoptimal only when exact
storage addresses are used for retrieval. When aretrieva address is approximate
(i.e.,, when it equals astorage address plus some noise), both the signal and the noise
are reduced, and also their ratio isreduced. Anaysis of thisis more complicated
than the one above, and it isnot carried out here. The result isthat, for maximum
recovery of stored words with approximate retrieval addresses, p should be
somewhat larger than (2MT)‘1/ 3 (typically, lessthan twice aslarge); however, when
the data are clustered rather than uniform random, optimum p tends to be smaller
than (2MT) V3,

In acaseyet more general, thetraining setisnot “clean” but contains many noisy
copies of each word to be stored, and the data addresses are noisy (cf. Fig. 3.1).
Then it makes sense to store words within asmaller radius and to retrieve them
within alarger. To allow such memoriesto be analyzed, Avery Wang (unpublished)

KANERVA / SDM AND RELATED MODELS / 02/02/02 / P. 16

and Jaeckel (1988) have derived formulas for the size of the overlap of activation
sets with different radii of activation. Asarule, the overlap decreases rapidly with
increasing distance between the centers of activation.

3.3.7. Memory Capacity (1)

Storage and retrieval in a standard random-access memory are deterministic.
Therefore, its capacity (in words) can be expressed simply as the number of
memory locations. In a sparse distributed memory, retrieval of wordsis statistical.
However, its capacity, too, can be defined as alimit on the number T of words that
can be stored and retrieved successfully, although the limit depends on what we
mean by success.

A simple criterion of successisthat a stored bit isretrieved correctly with high
probability ¢ (e.g., 0.99< ¢ < 1). Other criteriacan be derived from it or arerelated
to it. Specifically, capacity hereisthe maximum T, Ty, such that Pr{Z; , = W, }
> ¢; we are assuming that exact storage addresses are used to retrieve the words. It
is convenient to relate capacity to memory size M and to defineit as T = Ty /M.
Asfidelity ¢ approaches 1, capacity T approaches0, and the values of 1 that concern
us here are smaller than 1L We will now proceed to estimate T.

In Section 3.3.5 on Recall Fidelity we saw that the bit-recall probability ¢ is
approximated by ®(p), where p isthe signal-to-noise ratio as defined above. By
writing out p and substituting T for T we get

p=o(p)=of — M ¥4

1+ ptM(1 + p2M)
which leads to
o1 2~n02~ pM
[P=(@)]"=p 1+ ptM(1 + p2M)

where @t istheinverse of the normal distribution function. Dividing by pM in the
numerator and the denominator gives

1

oM +1(1+p2M)

CROVER

Theright side goesto 1/t as the memory size M grows without bound, giving usa
simple expression for the asymptotic capacity:

m_ 1
[P1($)]?
To verify thislimit, we use the optimal probability of activation, taking note that

KANERVA / SDM AND RELATED MODELS / 02/02/02 / P. 17

it depends on both M and T: p = (2MT) Y2 = (2tM2)V3, Then, in the expression
above, 1/(pM) = (21'/|V|)1/3 and goes to zero as M goes to infinity, because T < 1.
Similarly, (1 + p?M) =1+ (3 ¥M)*® and goesto t.

To compare this asymptotic capacity to the capacity of afinite memory, consider
¢ = 0.999, meaning that about one bit in athousand is retrieved incorrectly. Then
the asymptotic capacity ist = 0.105, and the capacity of the million-location sample
memory is0.096. Keeler (1988) has shown that the sparse distributed memory and
the binary Hopfield net trained with the outer-product leaning rule, which is
equivalent to a correlation-matrix memory, have the same capacity per storage
element or counter. The 0.15N capacity of the Hopfield net (T = 0.15) corresponds
tofidelity ¢ = 0.995, meaning that about one bit in 200 isretrieved incorrectly. The
practical significance of the sparse distributed memory design isthat, by virtue of
the hard locations, the number of storage elements isindependent of the input and
output dimensions. Doubling the hardware doubles the number of words of agiven
size that can be stored, whereas the capacity of the Hopfield net is limited by the
word size.

A very simple notion of capacity has been used here, and it results in capacities
of about 10 percent of memory size. However, the assumption has been that exact
storage addresses are used inretrieval. If approximate addresses are used, and if less
error istolerated in the words retrieved than in the addresses used for retrieving
them, the capacity goes down. The most complete analysis of capacity under such
general conditions has been given by Chou (1989). Expressing capacity in absolute
terms, for example, as Shannon’s information capacity, is perhaps the most
satisfying. This approach has been taken by Keeler (1988). Allocating the capacity
isthen a separate issue: whether to store many words or to correct many errors. A
practical guide isthat the number of stored words should be from 1 to 5 percent of
memory size (i.e., of the number of hard locations).

3.4. SDM asan Artificial Neur al Network

The sparse distributed memory, as an artificial neural network, is a synchronous,
fully connected, three-layer (or two-layer, see below), feed-forward net illustrated
by Figure 3.7. Theflow of information in thefigureisfromIeft toright. The column
of N circlesontheleft iscalled theinput layer, the column of M circlesinthemiddie
is called the hidden layer, and the column of U circleson theright is called the
output layer, and the circlesin thethree columnsare called input units, hidden units,
and output units, respectively.

((FIGURE 3.7. Feed-forward artificial neural network.))

The hidden units and the output units are bona fide artificial neurons, so that, in
fact, there are only two layers of “neurons.” The input units merely represent the

KANERVA / SDM AND RELATED MODELS / 02/02/02 / P. 18

outputs of some other neurons. The inputs X,, to the hidden units label the input
layer, the input coefficients Ay, ,, of the hidden units label the lines leading into the
hidden units, and the outputsy,,, of the hidden unitslabel the hidden layer. If yisthe
activation function of the hidden units (e.g., y(d) =1if d>D, and y(d) =0
otherwise), the output of the mth hidden unit is given by

oN 0
Ym = yﬁzlAm, anH

which, in vector notation, isy,, = Y(A,[X), where x is the vector of inputs to, and
An, isthe vector of input coefficients of, the mth hidden unit.

A similar description applies to the output units, with the outputs of the hidden
units serving as their inputs, so that the output of the uth output unit is given by

oM 0
z, = Zanzlcm’ uy%

or, in vector notation, z, = z(Cy, [y). Here, Cry, isthe vector of input coefficients
of the uth output unit, and zis the activation function.

From the equations aboveit is clear that the input coefficients of the hidden units
form the address matrix A, and those of the output units form the contents matrix
C, of asparsedistributed memory. In the terminology of artificial neural nets, these
are the matrices of connection strengths (synaptic strengths) for the two layers.
‘Fully connected’ means that all elements of these matrices can assume nonzero
values. Later we will see sparsely connected variations of the model.

Correspondence between Figures 3.7 and 3.4 is now demonstrated by
transforming Figure 3.7 according to Figure 3.8, which showsfour waysof drawing
artificial neurons. View A shows how they appear in Figure 3.7. View B islaid out
similarly, but all labels now appear in boxesand circles. In view C, the diamond and
thecirclethat represent the inner product and the output, respectively, appear below
the column of input coefficients, so that these units are easily stacked side by side.
View D isessentialy the same asview C, for stacking units on top of each another.
We will now redraw Figure 3.7 with units of type D in the hidden layer and with
units of type C in the output layer. Aninput (a circle) that is shared by many units
isdrawn only once. The result is Figure 3.9. Its correspondenceto Figure 3.4 is
immediate, the vectors and the matricesimplied by Figure 3.7 are explicit, and the
cobwebs of Figure 3.7 are gone.

((FIGURE 3.8. Four views of an artificial neuron.))
((FIGURE 3.9. Sparse distributed memory as an artificial ...))
In describing the memory, the term ‘synchronous’ means that al computations

KANERVA / SDM AND RELATED MODELS / 02/02/02 / P.19

are completed in what could be called amachine cycle, after which the network is
ready to perform another cycle. The term is superfluousiif the net is used as a feed-
forward net akin to arandom-access memory. However, it is meaningful if the
network’s output is fed back as input: the network is allowed to settle with each
input so that a completely updated output is available as the next input.

Asamultilayer feed-forward net, the sparse distributed memory is akin to the
nets trained with the error back-propagation a gorithm (Rumelhart and M cClelland
1986). How are the two different? In a broad sense they are not: wetry to find
matrices A and C, and activation functionsy and z, that fit the source of our data. In
practice, many things are done differently.

In error back-propagation, the matrices A and C and the activation vector y are
usually real-valued, the components of y usually range over the interva
[-1, 1] or [0, 1], the activation functiony and its inverse are differentiable, and the
data are stored using a uniform algorithm to change both A and C. In sparse
distributed memory, the address matrix A isusually binary, and variousmethods are
used for choosing it, but once alocation’s address has been set, it is not changed as
the data are stored (A is constant); furthermore, the activation function y is a step
function that yields an activation vector y that is mostly Os, with afew 1s. Another
major difference isin the size of the hidden layer. In back-propagation nets, the
number of hidden units is usually smaller than the number of input units or the
number of itemsin thetraining set; in asparse distributed memory, it ismuch larger.

The differencesimply that, relative to back-propagation nets, the training of a
sparse distributed memory isfast (it iseasy to demonstrate single-trial learning), but
applying it to anew problem isless automatic (it requires choosing an appropriate
data representation, as discussed in the section on SDM research below).

3.5. SDM asa Model of the Cerebellum

3.5.1. Modeling Biology with Artificial Neural Networks

Biological neurons are cells that process signals in animalsand humans, allowing
them to respond rapidly to the environment. To achieve speed, neurons use electro-
chemical mechanismsto generate asignal (avoltage level or electrical pulses) and
to transmit it to nearby and distant sites.

Biological neurons come in many varieties. The peripheral neurons couple the
organism to the world. They include the sensory neurons that convert an external
stimulusinto an electrical signal, the motor neurons whose electrical pulses cause
muscle fibers to contract, and other effector neurons that regulate the secretion of
glands. However, most neuronsin highly evolved animals are interneurons that
connect directly to other neurons rather than to sensors or to effectors. Interneurons
also come in many varieties and they are organized into a multitude of neural

KANERVA / SDM AND RELATED MODELS / 02/02/02 / P.20

circuits.

A typical interneuron has a cell body and two kinds of arborizations: adendrite
tree that receives signals from other neurons, and an axon tree that transmits the
neuron’s signal to other neurons. Transmission-contact points between neurons are
called synapses. They are either excitatory (positive synaptic weight) or inhibitory
(negative synaptic weight) according to whether asignal received through the
synapsefacilitatesor hindersthe activation of the receiving neuron. The axon of one
neuron can make synaptic contact with the dendrites and cell bodies of many other
neurons. Thus, aneuron receives multipleinputs, it integratesthem, and it transmits
the result to other neurons.

Artificial neural networks are networks of ssmple, interconnected processing
units, called (artificial) neurons. The most common artificial neuron in the
literature has multiple (N) inputs and one output and is defined by a set of input
coefficients—avector of N reals, standing for the synaptic weights—and a
nonlinear scalar activation function. The value of thisfunction is the neuron’s
output, and it serves asinput to other neurons. A linear threshold function isan
example of an artificial neuron, and the simplest kind—one with binary inputs and
output—is used in the sparse distributed memory.

It may seem strange to model brain activity with binary neurons when real
neurons are very complex in comparison. However, the brain is organized in large
circuits of neuronsworking in parallel, and the mathematical study of neural netsis
aimed more at understanding the behavior of circuitsthan of individual neurons. An
important fact—perhaps the most important—isthat the states of alarge circuit can
be mapped onto the points of a high-dimensional space, so that although a binary
neuronisagrossly smplified model of abiological neuron, alarge circuit of binary
neurons, by virtue of its high dimension, can be auseful model of acircuit of
biological neurons.

The sparse distributed memory’s connection to biology is made in the standard
way. Each row through A, d, y, and C in Figure 3.9—each hidden unit—isan
artificial neuron that represents a biological neuron. Vector x represents the N
signals coming to these neurons asinputs from N other neurons (along their axons),
vector A, represents the weights of the synapses through which the input signals
enter the mth neuron (at its dendrites), d,, represents the integration of the input
signals by the mth neuron, and y,,, represents the output signal, which is passed
along the neuron’s axon to U other neurons through synapses with strengths C,,,.

We will call these (the hidden units) the address-decoder neurons because they
are like the address-decoder circuit of arandom-access memory: they select
locationsfor reading and writing. The address that the mth address-decoder neuron
decodes is given by the input coefficients A, location A, is activated by inputs x
that equal or are sufficiently similar to A,,. How similar, depends on the radius of

KANERVA / SDM AND RELATED MODELS / 02/02/02 / P.21

activation H. It isinteresting that alinear threshold function with N inputs, whichis
perhapsthe oldest mathematical model of aneuron, isideal for address decoding in
the sparse distributed memory, and that a proper choice of a single parameter, the
threshold, makesit into an address decoder for alocation of an ordinary random-
access memory.

Likewise, in Figure 3.9, each column through C, s, and z isan artificial neuron
that represents a biological neuron. Since these U neurons provide the output of the
circuit, they are called the output neurons. The synapses made by the axons of the
address-decoder neurons with the dendrites of the output neurons are represented
by matrix C, and they are modifiable; they arethe sites of information storagein the
circuit.

We now look at how these synapses are modified; specifically, what neural
structuresareimplied by the memory’sstorage algorithm (cf. Figs. 3.4 and 3.9). The
word w is stored by adding it into the counters of the active locations, that is, into
the axonal synapses of active address-decoder neurons. Thismeansthat if alocation
isactivated for writing, its counters are adjusted upward and downward; if it isnot
activated, its counters stay unchanged.

Since the output neurons are independent of each other, it sufficesto look at just
one of them, say, the uth output neuron. See Figure 3.10 center. Theuth output
neuron produces the uth output bit, which is affected only by the uth bits of the
words that have been stored in the memory. Let us assume that we are storing the
word w. Its uth bit isw,,. To add w,, into all the active synapsesin the uth column of
C, it must be made physically present at the active synaptic sites of the column.
Since different sites in a column are active at different times, it must be made
present at all synaptic sites of the column. A neuron’sway of presenting asignal is
by passing it along the axon. This suggeststhat the uth bit wy, of theword-in register
should be represented by aneuron that corresponds to the uth output neuron z,, and
that its output signal should be available at each synapsein column u, althoughitis
“captured” only by synapses that have just been activated by address-decoder
neuronsy. Such an arrangement is shown in Figure 3.10. It suggests that word-in
neurons are paired with output neurons, with the axon tree of aword-in neuron
possibly meshing with the dendrite tree of the corresponding output neuron, asthat
would help carry the signal to all synaptic sitesof a column. Thiskind of pairing,
when found in abrain circuit, can help us interpret the circuit (Fig. 3.10, on the
right).

((FIGURE 3.10. Connections to an output neuron.))

3.5.2. TheCortex of the Cerebdlum

Of the neural circuitsin the brain, the cortex of the cerebellum resembl es the sparse
distributed memory the most. The cerebellar cortex of mammalsisafairly largeand

KANERVA / SDM AND RELATED MODELS / 02/02/02 / P.22

highly regular structure with an enormous number of neurons of only five major
kinds, and with two major kinds of input. I1ts morphology has been studied
extensively since early 1900s, itsrole in fine motor control has been established,
and its physiology is still studied intensively (Ito 1984).

The cortex of the cerebellum is sketched in Figure 3.11 after Llinés (1975).
Figure 3.12is Figure 3.9 redrawn in an orientation that corresponds to the sketch of
the cerebellar cortex.

((FIGURE 3.11. Sketch of the cortex of the cerebellum.))
((FIGURE 3.12. Sparse distributed memory’s resemblance ...))

Within the cortex arethe cell bodies of the granule cells, the Golgi cells, the
stellate cells, the basket cells, and the Purkinje cells. Figure 3.11 showsthe climbing
fibers and the mossy fibers entering and the axons of the Purkinje cells leaving the
cortex. This agrees with the two inputs into and the one output from a sparse
distributed memory. The correspondence goes deeper: The Purkinje cells that
provide the output, are paired with the climbing fibers that provide input. A
climbing fiber, which is an axon of an olivary cell that residesin the brain stem,
could thus have the same role in the cerebellum as the line from aword-in cell
through a column of counters has in a sparse distributed memory (see Fig. 3.10),
namely, to make a bit of adata word available at a bit-storage site when words are
stored.

The other set of inputs enters along the mossy fibers, which are axons of cells
outside the cerebellum. They would then be like an addressinto a sparse distributed
memory. Themossy fibersfeed into the granule cells, which thus would correspond
to the hidden units of Figure 3.12 (they appear as rows across Fig. 3.9) and would
perform address decoding. The firing of a granule cell would constitute activating
alocation for reading or writing. Therefore, the counters of alocation would be
found among the synapses of a granule cell’ saxon; these axons are called parallel
fibers. A parallel fiber makes synapses with Golgi cells, stellate cells, basket cells,
and Purkinjecells. Sincethe Purkinjecellsprovidethe output, it isnatural to assume
that their synapses with the parallel fibers are the storage sites or the memory’s
counters.

In addition to the “circuit diagram,” other things suggest that the cortex of the
cerebellum isan associative memory reminiscent of the sparse distributed memory.
Thenumbersarereasonable. The numbers quoted bel ow were compiled by L oebner
(1989) in areview of theliterature and they refer to the cerebellum of acat. Several
million mossy fibers enter the cerebellum, suggesting that the dimension of the
address space is severa million. The granule cells are the most numerous—in the
billions—implying a memory with billions of hard locations, and only a small
fraction of them is active at once, which agrees with the model. Each parallel fiber
intersects the flat dendritic trees of several hundred Purkinje cells, implying that a

KANERVA / SDM AND RELATED MODELS / 02/02/02 / P.23

hard location has severa hundred counters. The number of parallel fibers that pass
through the dendritic tree of a single Purkinje cell isaround a hundred-thousand,
implying that asingle “bit” of output is computed from about a hundred-thousand
counters (only few of which are active at once). The number of Purkinje cellsis
around amillion, implying that the dimension of the datawordsisaround amillion.
However, asingleolivary cell sendsabout ten climbing fibersto that many Purkinje
cells, and if, indeed, the climbing fibers train the Purkinje cells, the output
dimensionismorelike a hundred-thousand than amillion. All these numbers mean,
of course, that the cerebellar cortex isfar from fully connected: every granule cell
does not reach every Purkinje cell (nor does every mossy fiber reach every granule
cell; moreon that below).

Thisinterpretation of the cortex of the cerebellum as an associative memory, akin
to the sparse distributed memory, is but an outline, and it contai nsdiscrepancies that
areevident even at thelevel of cell morphology. According to themodel, an address
decoder (a hidden unit) should receive al address bits, but a granule cell receives
input from threeto five mossy fibersonly, and for a granule céll to fire, most or all
of itsinputs must be firing (the number of active inputs required for firing appears
to be controlled by the Golgi cellsthat provide the other major input to the granule
cells; the Golgi cells could control the number of locations that are active at once).
The very small number of inputsto agranule cell meansthat activation isnot based
on Hamming distance from an address but on certain address bits being on in the
address register. Activation of locations of asparse distributed memory under such
conditions has been treated specifically by Jaeckel, and the ideais present aready
in the cerebellar models of Marr and of Albus. Thesewill be discussed in the next
two sections.

Many details of the cerebellar circuit are not addressed by this comparison to the
gparse distributed memory. The basket cellsconnect to the Purkinje cellsin aspecial
way, the stellate cells make synapses with the Purkinje cells, and signals from the
Purkinje cells and climbing fibers go to the basket cells and Golgi cells. The nature
of synapses and signals—the neurophysiology of the cerebellum—has not been
considered. Some of these things are addressed by the mathematical modelsof Marr
and of Albus. The point here has been to demonstrate some of the variety in areal
neural circuit, to show how a mathematical model can be used to interpret such a
circuit, and to suggest that the cortex of the cerebellum constitutes an associative
memory. Because its mossy-fiber input comesfrom all over the cerebral cortex—
from many sensory areas—the cerebellumiswell located for correlating action that
it regulates, with information about the environment.

3.6. Variationsof the M odd

The basic sparse distributed memory model is fully connected. This means that

KANERVA / SDM AND RELATED MODELS / 02/02/02 |/ P.24

every input unit (address bit) is seen by every hidden unit (hard location), and that
every hidden unit is seen by every output unit. Furthermore, all addresses and words
arebinary. If =1 and 1 are used as the binary components, ‘fully connected’ means
that none of the elements of the address and contents matrices A and C is
(identically) zero. Partially—and sparsel y—connected models have zerosin one or
both of the matrices, as a missing connection is marked by aweight that is zero.

Jaeckel has studied designs with sparse address matrices and binary data. In the
selected-coordinate design (1989a), —1s and 1s are assumed to be equally likely in
the data addresses; in the hyperplane design (1989b), the data-address bits are
assumed to be mostly (e.g., 90%) —1s. Jaeckel’s papers are written in terms of
binary Osand 1s, but herewewill use—-1sand 1s, and will let a0 stand for amissing
connection or a“don’t care’-bit (for which Jaeckel usesthe value 1/2). Jaeckel uses
one-million-location memories (M = 1,000,000) with a 1,000-dimensional address
space (N = 1,000) to demonstrate the designs.

3.6.1. Jaeckel’s Selected-Coor dinate Design

In the selected- coordinate design, the hard-address matrix A has amillion rows
withten —1sand 1s (k= 10) in each row. The —1sand 1s are chosen with probability
1/2 and they are placed randomly within the row and independently of other rows,
the remaining 990 coordinates of arow are 0s. Thisisequivalent to taking auniform
random A of —1sand 1s and setting arandom 990 coordinates in each row to zero
(different 990 for different rows). A location is activated if the values of al ten of
its selected coordinates match the address register x: y,,= 1iff A,k =k. The
probability of activating ahard location isrelated to the number of nonzero
coordinatesin a hard address by p = 0.5%. Here, k = 10 and p = 0.001.

3.6.2. Jaeckel’s Hyperplane Design

The hyperplane design deals with data where the addresses are skewed (e.g., 100
1sand 900 —1s). Each row of the hard-address matrix A hasthree 1s(k = 3), placed
at random, and the remaining 997 places have Os (thereareno —1s). A location is
activated if the address register has 1s at those same three places: y,,, = 1 iff A, [X
= k. The probability of activating alocation isrelated to the number of 1sinits
addresshby p = (L/N)k, where L isthe number of 1sin the data addresses x. Here, N
=1,000, L =100, k=3, and p = 0.001.

Jaeckel has shown that both of these designs are better than the basic design in
recovering previously stored words, as judged by signal-to-noiseratios. They are
also easier to realize physically—in hardware—because they require far fewer
connections and much less computation in the address-decoder unit that determines
the set of active locations.

The region of the address space that activates ahard location in the three designs

KANERVA / SDM AND RELATED MODELS / 02/02/02 / P.25

can be interpreted geometrically asfollows: A location of the basic sparse
distributed memory is activated by all addressesthat are within H Hamming units
of the location’ s address, so that the exciting part of the address spaceisa
hypersphere around the hard address. In the selected-coordinate design, a hard
location is activated by all addressesin a subspace of the address space defined by
the k selected coordinates—that is, by the vertices of an

(N - k)-dimensional hypercube. In the hyperplane design, the address spaceis a
hyperplane defined by the number of 1sin an address, L (whichis constant over all
data addresses), and ahard location is activated by the intersection of the address
space with the (N — k)-dimensional hypercube defined by the k 1s of the hard
address.

The regions have a spherical interpretation also in the latter two designs, as
suggested by the activation condition A, (X = k (same formulafor both designs; see
above). It tellsthat the exciting points of the address space lie on the surface of a
hyperspherein Euclidean N-space, with center coordinates A, (the hard address)
and with Euclidean radius (N — k)1/2 (no points of the address space lie inside the
sphere). This gives rise to intermediate designs, as suggested by Jaeckel (1989b):
let the hard addresses be defined in —1s, Os, and 1s as above, and | et themth hard
location be activated by all addressesx within asuitably large hypersphere centered
at the hard address. Specifically, y,, = 1if, and only if, A,k = G. The parameters
G and k (and L) have to be chosen so that the probability of activating alocation is
reasonable.

The optimum probability of activation p for the various sparse distributed
memory designs is about the same—it isin the vicinity of (2MT)‘1/ 3_and the
reason isthat, in al these designs, the sets of locations activated by two addresses,
x and x', overlap minimally unlessx and x" are very similar to each other. The sets
behave in the manner of random sets of approximately pM hard locationseach, with
two such sets overlapping by p°M locations, on the average (unlessx and X' arevery
similar to each other). Thisis a consequence of the high dimension of the address
space.

In the preceding section on the cerebellum we saw that the hard-address matrix
A, asimplied by the few inputs (3-5 mossy fibers) to each granule cell, isvery
sparse, and that the number of active inputs required for agranule cell to fire, can
be modulated by the Golgi cells. This means that the activation of granule cellsin
the cerebellum resembl es the activation of locationsin an intermediate design that
is close to the hyperplane design.

Not only are the mossy-fiber connectionsto agranule cell few (3-5 out of several
million), but also the granule-cell connections to a Purkinje cell are few (hundred
thousand out of billions), so that also the contents matrix C isvery sparse. This
aspect of the cerebellum has not been modeled mathematically.

KANERVA / SDM AND RELATED MODELS / 02/02/02 / P.26

3.6.3. Hassoun’s Pseudorandom Associative Neural Memory

Independently of the above developments, Hassoun (1988) has proposed a model
with arandom, fixed address matrix A and variable contents matrix C. This model
allows usto extend the concepts of this chapter to data with short addresses (e.g., N
= 4 bits), and it introduces ideas about storing the data (i.e., training) that can be
applied to associative memories at large.

The data addresses X and words W in Hassoun's examples are binary vectorsin
Osand 1s. The elements of the hard-address matrix A are small integers; they are
chosen at uniform random from the symmetricinterval {-L,-L+1,-L+2,...,L},
where L isasmall positiveinteger (e.g., L = 3). Each hard location hasits own
activation threshold D,,,, which is chosen so that approximately half of &l possible
N-bit addresses x activatethelocation: y,,=1if A ,[X =Dy, and y,, = 0 otherwise.
The effect of such addressing through A isto convert the matrix X of N-bit data
addressesinto the matrix Y of M-bit activation vectors, where M > N and where
each activation vector Y, isabout half Os and half 1s (probability of activation pis
around 0.5).

Geometric interpretation of addressing through A isasfollows. The space of hard
addressesis an N-dimensional hypercube with sides of length 2L + 1. The unit
cubes or cells of this space are potential hard locations. The M hard addresses A,
are chosen at uniform random from within this space. The space of data addresses
isan N-cube with sidesof length 2; it isat the center of the hard-address space, with
the cell 000...0 at the very center. The data addresses that activate the location A,
are the ones closest to A, and they can be visualized asfollows: A straight lineis
drawnfrom A, through 000...0. Each setting of the threshold D,,, then corresponds
to an N — 1-dimensional hyperplane perpendicular to thisline, at some distance
from A, The cellsx of the data-address space that are on the A, side of the plane
will activatelocation A, Thethreshold D,,,is chosen so that the plane cuts the data-
addresses space into two nearly equal parts.

The hard addresses A |, correspond naturally to points (and subspaces) A}, of the
data-address space {0, 1} N gotten by replacing the negative components of A, by
Os, the positive components by 1s, and the Os by either (a“don’t care”). The
absolute values of the components of A ,, then serve as weights, and the mth
location is activated by x if the weighted distance between A, and x isbelow a
threshold (cf. Kanerva 1988, pp. 46-48).

High probability of activation (p = 0.5) works poorly with the outer-product
leaning rule. However, it is appropriate for an analytic solution to storage by the
Ho—Kashyap recording algorithm (Hassoun and Y oussef 1989). This algorithm
findsacontentsmatrix C that solvesthelinear inequalitiesimplied by Z =W, where
W isthe matrix of data wordsto bestored, and Z = z(S) = z(Y C) isthe matrix of
wordsretrieved by the rows of X. Theinequalitiesfollow from the definition of the

KANERVA / SDM AND RELATED MODELS / 02/02/02 / P.27

threshold functionz, asW; , = 1impliesthat S; |, > 0, and W; , = Oimpliesthat §
< 0. Hassoun and Youssef have shown that this storage algorithm resultsin large
basins of attraction around the data addresses, and that if data are stored
autoassociatively, false attractors (i.e., spurious stable patternsand limit cycles) will
berelatively few.

3.6.4. Adaptation to Continuous Variables by Prager and Fallside

All the models discussed so far have had binary vectors as inputs and outputs.
Prager and Fallside (1989) consider several waysof extending the sparsedistributed
memory model into rea -valued inputs. The following experiment with spoken
English illustrates their approach.

Eleven vowels were spoken several times by different people. Each spoken
instance of avowel isrepresented by a 128-dimensional vector of reals that serves
asan address or cue. The corresponding dataword isan 11-bit |abel. One of the bits
inalabel isal, and its position corresponds to the vowel in question. Thisisa
standard setup for classification by artificial neural nets.

For processing on acomputer, theinput variablesare discretized into 513 integers
in the range 16,127-16,639. The memory is constructed by choosing (2,000) hard
addresses at uniform random from a 128-dimensional hypercube with sides of
length 32,768. The cells of this outer space are addressed naturally by 128-place
integersto base 32,768 (i.e., thesearethevectors A), and the data addresses x then
occupy asmall hypercube at the center of the hard-address space; the data-address
spaceisa 128-dimensional cube with sides of length 513. Activation isbased on
distance. Address x activates the mth hard location if the maximu coordinate
separtion (i.e., L, distance) between x and A ,,isat most 16,091. About ten percent
of the hard locations will be activated. Experiments with connected speech dedl
similarly with 896-dimensional real vectors. In other experiments with the same
data, the use of Euclidean distance and other distance measures in place of the L,
distanceresultedin only minor changesin the outcome. Seealso Clarkeet al. (1991)
for afurther analysis of the model and an example of its use.

Prager and Fallsidetrain the contents matrix C iteratively by correcting errors so
asto solvetheinequalitiesimplied by Z = W (see the last paragraph of Sec. 3.6.3).

Thisdesignissimilar to Hassoun’sdesign discussed in Section 3.6.3, in that both
have alarge space of hard addressesthat includes, at the center, asmall space of data
addresses, and that the hard locations are placed at random within the hard-address
space. The designs are in contrast with Albus' CMAC (discussed in the next
section), where the placement of the hard locationsis systematic.

3.7. Relation tothe Cerebellar Moddsof Marr and of Albus

The first comprehensive mathematical models of the cerebellum as an associative

KANERVA / SDM AND RELATED MODELS / 02/02/02 / P. 28

memory are by Marr (1969) and by Albus (1971), devel oped independently in their
doctoral dissertations, and they still arethe most complete of any such models. They
were developed specifically as models of the cerebellar cortex, whereas the sparse
distributed memory’s resemblance to the cerebellum was noticed only after the
model had been developed fully.

Marr’s and Albus’'s models attend to many of the details of the cerebellar circuit.
The models are based mostly on connectivity but also on the nature of the synapses.
Albus (1989) has made a comparison of the two models. The models will be
described here insofar asto show their relation to the sparse distributed memory.

3.7.1. Marr’'sModel of the Cerebellum

The main circuit in Marr’s model—in Marr’s vocabulary and in our symbols—
consistsof (N =) 7,000 input fibersthat feed into (M =) 200,000 codon cells that
feed into asingle output cell. The input fibers activate codon cells, and codon-cell
connections with the output cell store information. The correspondence to the
cerebellum is straightforward: the input fibers model mossy fibers, the codon cells
model granule cells, and the output cell models a Purkinje cell.

Marr discusses at length the activation of codon cells by theinput fibers. Since
the input fibers represent mossy fibers and the codon cells represent granule cells,
each codon cell receivesinput from 3-5 fibersin Marr’smodel. The model assumes
discrete time intervals. During an interval an input fiber iseither inactive (1) or
active (+1), and at the end of the interval acodon cell iseither inactive (0) or active
(+1) according to the activity of itsinputs during theinterval; the codon-cell output
isalinear threshold function of itsinputs, with +1 weights.

Theoverall pattern of activity of the N input fibersduring an interval iscalled the
input pattern (an N-vector of —1sand 1s), and the resulting pattern of activity of the
M codon cells at the end of theinterval is called a codon representation of the input
pattern (an M-vector of Os and 1s). These correspond, respectivdy, to the address
register x, and to the activation vector y, of a sparse distributed memory.

Essential to the model isthat M is much larger than N, and that the number of 1s
in a codon representation is small compared to M, and relatively constant;
conditions that hold also for the sparse distributed memory. Then the codon
representation amplifies differences between input patterns. To make differencesin
N-bit patterns commensurate with differencesin M-bit patterns, Marr usesarelative
measure defined as the number of 1sthat two patterns havein common, divided by
the number of placeswhere either pattern hasal (i.e., the size of theintersection of
1srelative to the size of their union).

Marr’'s model’s relation to artificial neural networksis simple. Theinput fibers
correspond to input units, the codon cells correspond to hidden units, and the output
cell correspondsto an output unit. Each hidden unit has only 3-5 inputs, chosen at

KANERVA / SDM AND RELATED MODELS / 02/02/02 / P.29

random from the N input units, and the input coefficientsarefixed at +1. Obvioudly,
the net isfar from fully connected, but all hidden units are connected to the output
unit, and these connections are modifiable. The hidden units are activated by a
linear threshold function, and the threshold varies. However, it varies not asthe
result of training but dynamically so asto keep the number of active hidden units
within desired limits (500-5,000). Therefore, towhat first lookslike afeed-forward
net must be added feedback connections that adjust dynamically the threshol ds of
the hidden units. The Golgi cells are assumed to provide this feedback.

In relating Marr’s model to the sparse distributed memory, the codon cells
correspond to hard locations, and the hard-address matrix A isvery sparse, as each
row hask,, 1s(ky =3, 4, 5), placed at random, andN - k,, Os (thereare no —1sin
A). A codon cell firesif most of its 3-5 inputs are active, and the Golgi cells set the
firing threshold so that 500-5,000 codon cells (out of the 200,000) are active at any
one time, regardless of the number of active input lines. Thus, the activation
function y,,, for hard location A ,,isathreshold function with value 1 (the codon cell
fires) when most—but not necessarily all—of the k,,, 1sof A ,, are matched by 1s
in the address x. The exact condition of activation in the examples devel oped by
Marr isthat A ,, (X = R, where the threshold R is between 1 and 5 and depends on
X. Thus, the codon cells are activated in Marr smodel in away that resemblesthe
activation of hard locationsin an intermediate design of sparse distributed memory
that is close to the hyperplane design (in the hyperplane design, all inputs must be
activefor acell tofire).

One of the conditions of the hyperplane design isfar from being satisfied—
namely, that the number of 1sin the addressis about constant (hence the name
hyperplane design). In Marr’s model it is alowed to vary widely (between 20 and
1,000 out of 7,000), and this creates the need for adjusting the threshold
dynamically. In the sparse distributed memory variations discussed so far, the
threshold isfixed, but later in this chapter we will refer to experimentsin which the
thresholds are adjusted either dynamically or by training with data.

Marr estimates the capacity of hismodel under the most conservative of
assumptions, namely, that (Os and) 1sare added to one-bit countersthat areinitialy
0. Under thisassumption, all counterseventually saturate and all informationislost,
as pointed out by Albus (1989).

3.7.2. Albus Cerebellar Model Arithmetic Computer (CMAC)

Thisdescription of CMAC isbased ontheonein Albus' book Brains, Behavior, and
Robotics (1981) and usesits symbols. The purpose hereisto describeit sufficiently
to allow its comparison to the sparse distributed memory.

CMAC is an associative memory with alarge number of addressable storage
locations, just as the sparse distributed memory is, and the address space is

KANERVA / SDM AND RELATED MODELS / 02/02/02 / P.30

multidimensional. However, the number of dimensions, N, isusually small (e.g., N
= 14), while each dimension, rather than being binary, spans a discrete range of
values{0, 1, 2, ..., R—1}. Thedimensions are also called input variables, and an
input variable might represent ajoint angle of arobot arm (0180 degrees)
discretized in five-degree increments (resolution R = 36), and a 14-dimensional
address might represent the angular positions and velocities of the jointsin aseven-
jointed robot arm. Different dimensions can have different resolutions, but we
assume here, for simplicity, that all have the same resolution R.

An N-dimensional address in this space can be represented by an N-dimensional
unit cube, or cell, and the entire address spaceis then represented by RN of these
cells packed into an N-dimensional cube with sides of length R. The cellsare
addressed naturally by N-place integersto base R.

A storagelocation isactivated by some addresses and not by others. In the sparse
distributed memory, these exciting addresses occupy an N-dimensional spherewith
Hamming radius H, centered at the location’s address. The exciting region of the
address spacein Albus CMAC isan N-dimensional cube with sides of length K (1
<K <R); itisacubicle of KN cells (near the edge of the spaceit is the intersection
of such acubiclewith the address space and thus contains fewer than KN cells). The
center coordinates of the cubicle can be thought of as the location’ s address (the
center coordinates areintegersif K isodd and half-way between two integersif K
iseven, and the center can lie outside the RN cube).

The hard locations of a sparse distributed memory are placed randomly in the
address space; those of CMAC—the cubicles—are arranged systematically as
follows: First, the RN cube i's packed with the KN cubicles starting from the corner
cell at the origin—the cell addressed by (0, 0, O, ..., 0). This defines a set of
[R/KIN hard locations (the ceiling of the fraction means that the spaceis covered
completely). The next set of (1+] (R—1)/K)N hard locationsis defined by
moving the entire package of cubiclesup by one cell along the main diagonal of the
RN cube—a translation. To cover the entire address space, cubicles are added next
to the existing ones at this stage. Thisisrepeated until K sets of hard locations have
been defined (K translations take the cubicles to the starting position), resulting in
atotal of at least K| R/K]N hard locations. Since each set of hard |ocations covers
the entire RN address space, and since the locations in a set do not overlap, each
address activates exactly one location in each set and so it activates K locations
overall. Conversely, each location is activated by the KN addresses in its defining
cubicle (by fewer if the cubicle spills over the edge of the space). The systematic
placement of the hard |ocations allows addresses to be converted into activation
vectorsvery efficiently inahardwarerealization or in acomputer s mulation (Albus
1980).

Correspondence of the hard locations to the granule cells of the cerebellum is

KANERVA / SDM AND RELATED MODELS / 02/02/02 / P. 31

natural in Albus’ model. To make the model life-like, each input variable (i.e., each
coordinate of the address) isencoded in R + K — 1 hits. A bit in the encoding
represents amossy fiber, so that avector of N input variable (an address) is
presented to CMAC as binary inputson N(R + K — 1) mossy fibers. In the model,
each granulecell receivesinput from N mossy fibers, and each mossy fiber provides
input to at least [RZ/K'IN granule cells.

The 20-bit code for an input variable s, withrange R=17 and withK = 4isgiven
in Table 3.1. It corresponds to the encoding of the variabless; and s, in Figure 6.8
in Albus' book (1981, p. 149). The bits are labeled with letters above the codein
Table 3.1, and the same | etters appear below the code in four rows. Bit A, for
example, ison (+) when the input variable is at most 3, bit B is on when the input
variable falls between 4 and 7, and so forth.

((TABLE 3.1. Encoding a 17-level Input Variable s ...))

This encoding mimics nature. Many receptor neurons respond maximally to a
specific value of an input variable and to values near it. An address bit (a mossy
fiber) represents such areceptor, and it is (+)1 when the input variable is near this
specific value. For example, this“central” value for bit Bis5.5.

The four rows of labels below the code in Table 3.1 correspond to the four sets
of cubicles (K = 4) that define the hard locations (the granule cells) of CMAC. The
first set depends only on the input bits |abeled by the first row. If the code for an
input variables s, has Q1 first-row bits (Q; = 5in Table 3.1), then the NQ; first-row
bits of the N input variables define Q;N hard locations by assigning a location to
each set of N inputs that combines one first-row bit from each input variable. The
second set of QZN hard locations is defined similarly by the NQ, second-row bits,
and so forth with the rest.

We are now ready to describe Albus’ CMAC design asa special case of Jaeckel’s
hyperplane design. The N input variables s,, are encoded and concatenated into an
N(R + K — 1)-bit address x, which will have NK 1sand
N(R- 1) —1s. The address matrix A will have ¥, QN rows, and each row will
have N 1s, arranged according to the description in the preceding paragraph. The
rest of A will be Os (for “don’t care”; there will be no —1sin A). The activation
vector y can then be computed as in the hyperplane design: the mth location is
activated by x if the 1s of the hard address A ,, are matched by 1sinx (i.e., iff A,
X =N).

If the number of input variablesislarge enough (e.g., N > 20), the number of rows
intheaddressmatrix A, asgiven above, will be so large that building ahard location
for each addressin A isimpractical. To handle such cases, many addressesin A will
use asingle hard location. The contributionsinto alocation’s contentsfrom
disparate parts of the address space will then act as noise with respect to each other.
The mapping of the addressesin A to the hard locations is pseudorandom and is

KANERVA / SDM AND RELATED MODELS / 02/02/02 / P.32

effected by a hashing function. Multiple assignment of memory locationsin this
manner has been described also by Kohonen and Reuhkala (1978; Kohonen 1980)
in amethod called redundant hash addressing.

After aset of locations has been activated, CMAC isready to transfer data. Here,
as with the sparse distributed memory, we can look at a single coordinate of adata
words only, say, the uth coordinate. Since CMAC data are continuous or graded
rather than binary, the storage and retrieval rules cannot be identical to those of a
sparse distributed memory, but they aresimilar. Retrieval isssimpler: we usethesum
S, asoutput and we omit the final thresholding. From the regularity of CMAC it
follows that the sum is over K active locations.

From thisis derived a storage (learning) rule for CMAC: Before storing the
desired output value |5u at x, retrieve , using X asthe address and compute the error
Sy~ f)u . If the error is acceptable, do nothing. If theerror istoo large, correct the K
active counters (elements of the matrix C) by adding g(|5u -5,)/K to each, whereg
(0O<g<1l)isaganfactor that affectstherate of learning. This storage rule implies
that the countersin C count at intervals no greater than one Kth of the maximum
allowable error (the counting interval in the basic sparse distributed memory is 1).

In summary, multidimensional input to CMAC can be encoded into along binary
vector that serves as an address to a hyperplane-design sparse distributed memory.
The address bits and the hard-address decoders correspond very naturally to the
mossy fibersand the granul e cells of the cerebellum, respectively, and the activation
of ahard location corresponds to the firing of a granule cell. The synapses of the
parallel fiberswith the Purkinje cells are the storage sites suggested by the model,
and the value of an output variable is represented by the firing frequency of a
Purkinje cell. Training of CMAC isby error-correction, which presumably isthe
function of the climbing fibersin the cerebellum.

3.8. SDM Research

So far in this chapter we have assumed that the hard addresses and the dataare a
uniform random sample of their respective spaces (the distribution of the hard
locationsin CMAC isuniform systematic). This has allowed usto establish a base
line: we have estimated signal, noise, fidelity, and memory capacity, and we have
suggested reasonable values for various memory parameters. However, data from
real processes tend to occur in clusters, and large regions of the address space are
empty. When such dataare stored in auniformly distributed memory, large numbers
of locations are never activated and hence are wasted, and many of the active
locations are activated repeatedly so that they, too, are mostly wasted astheir
contents turn into noise.

There are many ways to counter thistendency of datato cluster. Let uslook at the
clustering of data addresses first. Several studies have used the memory efficiently

KANERVA / SDM AND RELATED MODELS / 02/02/02 / P. 33

by distributing the hard addresses A according to the distribution of the data
addresses X. Keeler (1988) observed that when the two distributions are the same
and the activation radius H is adjusted for each storage and retrieval operation so
that nearly optimal number of locations are activated, the statistical propertiesof the
memory are close to those of the basic memory with uniformly random hard
addresses. I n agreement with that, Joglekar (1989) experimented with NETtalk data
and got his best results by using a subset of the data addresses as hard addresses
(NETtalk transcribes English text into phonemes; Sejnowski and Rosenberg 1986).
In a series of experiments by Danforth (1990), recognition of spoken digits,
encoded in 240 bits, improved dramatically when uniformly random hard addresses
were replaced by addresses that represented spoken words, but the selected-
coordinate design with three coordinates performed the best. In yet another
experiment, Saarinen et al. (1991b) improved memory utilization by distributing
the hard addresses with Kohonen's self-organizing algorithm.

Two studies have shown that uniform random hard addresses can be used with
clustered data if the rule for activating locationsis adjusted appropriately. In
Kanerva (1991), storage and retrieval require two steps: thefirst to determine a
vector of N positive weights for each data address X, and the second to activate
locations according to a weighted Hamming distance between X and the hard
addresses A. In Pohjaand Kaski (1992), each hard location has its own radius of
activation H,,, which is chosen based on the data addresses X so that the probability
of activating alocation isnearly optimal.

It is equally important to deal with clustering in the stored words. For example,
someof their bitsmay be mostly on, some may be mostly off, and some may depend
on others. It is possible to analyze the data (X, Z) and the hard addresses A and to
determine optimal storage and retrieval algorithms (Danforth 1991), but we can
also useiterativetraining by error correction, as described abovefor Albus CMAC.
Thiswas done by Joglekar and by Danforth in their above-mentioned experiments.
When error correction is used, it compensates for the clustering of addresses as
well, but it also introduces the possibility of overfitting the model to the training set.

Two studies by Rogers (1989a, 19904a) deal specifically with the interactions of
the data with the hard addresses A. In the first of these he concludes that, in
computing the sum vector s, the active locations should be weighted according to
the words stored in them—in fact, each active counter C,, , might be weighted
individually. Thiswould take into account at once the number of words stored in a
hard location and the uniformity of those words, so asto giverelatively little weight
to locations or counters that record mostly noise. In the second study he uses a
genetic algorithm to arrive at a set of hard addresses that would store the most
information about a variable in weather data.

Other research issuesinclude the storage of sequences (Manevitz 1991) and the

KANERVA / SDM AND RELATED MODELS / 02/02/02 / P.34

hierarchical storage of data (Manevitz and Zemach 1997).

Most studies of sparse distributed memory have used binary dataand have dealt
with multivalued variables by encoding them according to an appropriate binary
code. Table 3.1 isan example of such acode. Important about the code is that the
Hamming distance between codewords corresponds to the difference between the
values being encoded (it grows with the difference until a maximum of 2k is
reached, after which the Hamming distance stays at the maximum). Jorgensen
(1990) proposes the Radial Basis Sparse Distributed Memory that uses ideas from
radial-basi s functions and probabilistic neural networks to deal with continuous
variables; the paper also introduces the Infolding Net for working with
nonstationary data. The use of continuous variables by Prager and Fallside has been
discussed in Section 3.6.4.

Sparse distributed memory has been simulated on many computers (Rogers
1990b), including the highly parallel Connection Machine (Rogers 1989b) and
special-purpose neural-network computers (Nordstrém 1991). Hardware
implementations have used standard logic circuits and memory chips (Flynn et al.
1987) and programmable gate arrays (Saarinen et a. 1991a). A systolic-array
implementation of sparse distributed memory and aresistor circuit for computing
the Hamming distances have been described by Keeler and Denning (1986).

3.9. Associative Memory asa Component of a System

In practical systems, an associative memory plays but a part. It can store and recall
large numbers of large patterns (high-dimensional vectors) based on other large
patterns that serve as memory cues, and it can store and recall long sequences of
such patterns, doing it al in the presence of noise. In addition to generating output
patterns, the memory providesan estimate of their reliability based on thedatait has
stored. But that is all; the memory assigns no meaning to the data beyond the
reliability estimate. The meaning is determined by other parts of the system, which
are also responsible for processing datainto forms that are appropriate for an
associative memory. Sometimes these other tasks are called preprocessing and
postprocessing, but the terms are misleading inasmuch as they imply that
preprocessing and postprocessing are minor peripheral functions. They are major
functions—at least in the nervous systems of animalsthey are—and feedback from
memory isintegral to these “peripheral” functions.

For an example of what asensory processor must do in producing patternsfor an
associative memory, consider identifying objects by sight, and assume that the
memory istrained to respond with the name of an object, in some suitable code,
when presented with an object (i.e., when addressed by the encoding for the object).
In what features should objects be encoded? To make efficient use of the memory,
all views of an object—past, present, and future—should get the same encoding,

KANERVA / SDM AND RELATED MODELS / 02/02/02 / P.35

and any two different objects should get different encodings. The name, as an
encoding, satisfiesthis condition and so it isan ideal encoding, except that itis
arbitrary. What we ask of the visual system isto produce an encoding that reflects
physical reality and that can serve as an input to an associative memory, which then
outputs the name.

For this final naming step to be successful—even with views as yet unseen—
different views of an object should produce encodingsthat are similar to each other
as measured by something like the Hamming distance, but that are dissmilar to the
encodings of other objects. A raw retinal image (apixel map) is apoor encoding,
becausetheretinal cells excited by an object vary drastically with viewing distance
and with gaze relative to the object. It issmple for usto fix the gaze—to look
directly at the object—but it isimpractica to bring objects to a standard viewing
distance in order to recognize them. Therefore, the visual system needsto
compensatefor changesin viewing distance by encoding—by expressingimagesin
featuresthat arerelatively insensitiveto viewing distance. Orientation of linesinthe
retinal image satisfy thiscondition, making them good featuresfor vision. Thismay
explain the abundance of orientation-sensitive neuronsin thevisual cortex, and why
the human visual system is much more sensitive to rotation than to scale (we are
poor at recognizing objectsin new orientations, we must resort to mental rotation).
Encoding shapesin long vectors of bits for an associative memory, where a bit
encodes orientation at alocation, has been described by Kanerva (1990).

What about the claim that “ peripheral” processing, particularly sensory
processing, isamajor activity in the brain? Large areas of the brain are specificto
one sensory modality or another.

In robots that learn, an associative memory stores aworld model that relates
sensory input to action. Theflow of eventsin theworld is presented to the memory
as asequence of large patterns. These patterns encode sensor data, internal-state
variables, and commands to the actuators. The memory’s ability to store these
sequences and to recall them under conditions that resemble the past, allowsits use
for predicting and planning. Albus (1981, 1991) argues that intelligent behavior of
animals and robots in complex environments requires not just one associative
memory but alarge hierarchy of them, with the sensors and the actuators at the
bottom of the hierarchy.

3.10. Summary

In this chapter we have explored a number of related designsfor an associative
memory. Common to them is afeed-forward architecture through two layers of
input coefficients or weights represented by the matrices A and C. Thematrix A is
constant, and the matrix C isvariable. The M rows of A are interpreted as the
addresses of M hard locations, and the M rows of C are interpreted as the contents

KANERVA / SDM AND RELATED MODELS / 02/02/02 / P. 36

of those locations. The rowsof A are arandom sample of the hard-address spacein
all but the Albus CMAC model, in which the sample is systematic. When the
sample israndom, it should allow for the distribution of the data.

Thematrix A and the threshold function y transform N-dimensional input vectors
into M-dimensional activation vectorsof Osand 1s. Since M is much larger than N,
the effect is a tremendous increase over the input dimension and a corresponding
increase in the separation of patterns and in memory capacity. This simplifiesthe
storage of words by matrix C. The training of C can be by the outer-product
learning rule, by error correction (deltarule), by an analytic solution of a set of
linear inequalities, or by acombination of the above. Training, by and large, isfast.
These memoriesrequire much hardware per stored pattern, but the resolution of the
components can be low.

The high fan-out and subsequent fan-in (divergence and convergence) implied by
these designs are found also in many neural circuitsin the brain. The
correspondenceismost striking in the cortex of the cerebellum, suggesting that the
cerebellum could function as an associative memory with billions of hard locations,
each one capable of storing severa-hundred-bit words.

The properties of these associative memoriesimply that if such memory devices,
indeed, play an important part in the brain, the brain must also include devices that
are dedicated to the sensory systems and that transform sensory signalsinto forms
appropriate for an associative memory.

Pattern Computing. The nervous system offers usanew model of computing, to
be contrasted with traditional numeric computing and symbolic computing. It deals
with large patterns as computational units and therefore it might be called pattern
computing. The main unitsin numeric computing are numbers, say, 32-bit integers
or 64-hit floating-point numbers, and we think of them as data; in symbolic
computing they are pointers of fewer than 32 bits, and we can think of them as
names (very compact, “ideal” encodings; see discussion on sensory encoding in
Sec. 3.9). In contrast, the unitsin pattern computing have hundreds or thousands of
bits, they serve both as pointers and as data, and they need not be precise. Nature
has found away to compute with such units, and we are barely beginning to
understand how it isdone. It appears that much of the power of pattern computing
derives from the geometry of very-high-dimensional spaces and from the
parallelism in computing that it allows.

Acknowledgments

Thiswork was supported by the National Aeronautics and Space Administration
(NASA) Cooperative Agreement NC2-387 with the Universities Space Research
Association (USRA). Computersfor the work were a gift from Apple Computer

KANERVA / SDM AND RELATED MODELS / 02/02/02 / P. 37

Company. Many of theideas came from the SDM Research Group of RIACS at the
NASA-Ames Research Center. We are indebted to Dr. Michael Raugh for
organizing and directing the group.

References

Albus, J.S. 1971. A theory of cerebellar functions. Mathematical Biosciences
10:25-61.

Albus, J.S. 1980. Method and Apparatus for Implementation of the CMAC
Mapping Algorithm. U.S. Patent No. 4,193,115.

Albus, J.S. 1981. Brains, Behavior, and Robotics. Peterborough, N.H.: BY TE/
McGraw—Hill.

Albus, J.S. 1989. The Marr and Albustheories of the cerebellum: Two early models
of associative memory. Proc. COMPCON Spring ' 89 (34th |EEE Computer
Society International Conference, San Francisco), pp. 577-582. Washington,
D.C.: IEEE Computer Society Press.

Albus, J.S. 1991. Outline for atheory of intelligence. IEEE Trans. Systems, Men,
and Cybernetics 31(3):473-509.

Anderson, J.A. 1968. A memory storage module utilizing spatial correlation
functions. Kybernetik 5(3):113-119.

Chou, P.A. 1989. The capacity of the Kanerva associative memory. IEEE Trans.
Information Theory 35(2):281-298.

Clarke, T.J.W., Prager, R.W., and Fallside, F. 1991. The modified Kanerva mode!:
Theory and results for real-time word recognition. IEE Proceedings—F
138(1):25-31.

Danforth, D. 1990. An empirical investigation of sparse distributed memory using
discrete speech recognition. Proc. Int. Neural Network Conference (Paris), Vol.
1, pp. 183-186. Norwell, Mass.: Kluver Academic. (Complete report, with the
sametitle, in RIACS TR 90.18, Research Institute for Advanced Computer
Science, NASA Ames Research Center.)

Danforth, D. 1991. Total Recall in Distributed Associative Memories. Report
RIACS TR 91.3, Research Ingtitute for Advanced Computer Science, NASA
Ames Research Center.

Flynn, M.J., Kanerva, P,, Ahanin, B., Bhadkamkar, N., Flaherty, P. and Hinkley, P.
1987. Sparse Distributed Memory Prototype: Principles of Operation. Report
CSL-TR78-338, Computer Systems Laboratory, Stanford University.

Hassoun, M.H. 1988. Two-level neural network for deterministic logic processing.
In N. Peyghambarian, ed., Optical Computing and Nonlinear Materials (Proc.
SPIE 881:258-264).

Hassoun, M.H., and Y oussef, A.M. 1989. High performance recording a gorithm
for Hopfield model associative memories. Optical Engineering 28(1):46-54.
Hopfield, J.J. 1982. Neural networksand physical systemswith emergent collective

computational abilities. Proc. Nat. Acad. Sci. U.SA. (Biophysics) 79(8):2554—
2558. (Reprinted in J.A. Anderson and E. Rosenfeld, eds., Neurocomputing:
Foundations of Research, pp. 460-464. Cambridge, Mass.: MIT Press.)

Ito, M. 1984. The Cerebellum and Neuronal Control. New Y ork: Raven Press.

KANERVA / SDM AND RELATED MODELS / 02/02/02 / P. 38

Jaeckel, L.A. 1988. Two Alternate Proofs of Wang's Lune Formulafor Sparse
Distributed Memory and an Integral Approximation. Report RIACS TR 88.5,
Research Ingtitute for Advanced Computer Science, NASA Ames Research
Center.

Jaeckel, L.A. 1989a. An Alternative Design for a Sparse Distributed Memory.
Report RIACS TR 89.28, Research Institute for Advanced Computer Science,
NASA Ames Research Center.

Jaeckel, L.A. 1989h. A Class of Designs for a Sparse Distributed Memory. Report
RIACS TR 89.30, Research Institute for Advanced Computer Science, NASA
Ames Research Center.

Joglekar, U.D. 1989. Learning to Read Aloud: A Neural Network Approach Using
Sparse Distributed Memory. Master’s thesis, Computer Science, UC Santa
Barbara. (Reprinted asreport RIACS TR 89.27, Research Institute for Advanced
Computer Science, NASA Ames Research Center.)

Jorgensen, C.C. 1990. Distributed Memory Approaches for Robotic Neural
Controllers. Report RIACS TR 90.29, Research Institute for Advanced
Computer Science, NASA Ames Research Center.

Kanerva, P. 1988. Spar se Distributed Memory. Cambridge, Mass.: Bradford/MIT
Press.

Kanerva, P. 1990. Contour-map encoding of shape for early vision. In D.S.
Touretzky, ed., Neural Information Processing Systems, Vol. 2, pp. 282—289
(Proc. NIPS-89). San Mateo, Calif.: Kaufmann.

Kanerva, P. 1991. Effective packing of patternsin sparse distributed memory by
selective weighting of input bits. In T. Kohonen, K. Makisara, O. Simula, and J.
Kangas, eds., Artificial Neural Networks, VVol. 1, pp. 279-284 (Proc. ICANN-91,
Helsinki). Amsterdam: Elsevier/North—Holland.

Keeler, J.D. 1988. Comparison between Kanerva's SDM and Hopfield-type neural
networks. Cognitive Science 12:299-329.

Keeler, J.D., and Denning, P.J. 1986. Notes on Implementation of Sparse
Distributed Memory. Report RIACS TR 86.15, Research Institute for Advanced
Computer Science, NASA Ames Research Center.

Kohonen, T. 1972. Correlation matrix memories. |EEE Trans. Computers C
21(4):353-359. (Reprinted in J.A. Anderson and E. Rosenfeld, eds.,
Neurocomputing: Foundations of Research, pp. 174-180. Cambridge, Mass.:
MIT Press.)

Kohonen, T. 1980. Content-Addressable Memories. New York: Springer—Verlag.

Kohonen, T. 1984. Salf-Organization and Associative Memory, 2nd ed. New York:
Springer—Verlag.

Kohonen, T., and Reuhkala, E. 1978. A very fast associative method for the
recognition and correction of misspelt words, based on redundant hash
addressing. Proc. Fourth Int. Joint Conference on Pattern Recognition (Kyoto),
pp. 807-809.

Llinés, R.R. 1975. The cortex of the cerebellum. Scientific American 232(1):56—-71.

Loebner, E.E. 1989. Intelligent network management and functional cerebellum
synthesis. Proc. COMPCON Spring ' 89 (34th IEEE Computer Society
International Conference, San Francisco), pp. 583-588. Washington, D.C.: IEEE

KANERVA / SDM AND RELATED MODELS / 02/02/02 / P.39

Computer Society Press. (Reprinted in The Selected Papers of Egon Loebner,
pp. 205-209. Palo Alto: Hewlett Packard Laboratories, 1991.)

Manevitz, L.M. 1991. Implementing a*“sense of time” viaentropy in associative
memories. In T. Kohonen, K. M&kisara, O. Simula, and J. Kangas, eds., Artificial
Neural Networks, Vol 2, pp. 1211-1214 (Proc. ICANN-91, Helsinki).
Amsterdam: Elsevier/North—Holland.

Manevitz, L.M., and Zemach, Y. 1997. Assigning meaning to data: Using sparse
distributed memory for multilevel cognitive tasks. Neurocomputing 14:15-39.

Marr, D. 1969. A theory of cerebellar cortex. J. Physiol. (London) 202:437-470.

Nordstrom, T. 1991. Designing and Using Massively Parallel Computersfor
Artificial Neural Networks. Licentiate thesis 1991:12L, Lulea University of
Technology, Sweden.

Pohja, S., and Kaski, K. 1992. Kanerva's Sparse Distributed Memory with Multiple
Hamming Thresholds. Report RIACS TR 92.06, Research Institute for
Advanced Computer Science, NASA Ames Research Center.

Prager, R.W., and Fallside, F. 1989. The modified Kanerva model for automatic
speech recognition. Computer Speech and Language 3(1):61-81.

Rogers, D. 1989%a. Statistical prediction with Kanerva's sparse distributed memory.
In D.S. Touretzky, ed., Neural Information Processing Systems, Vol. 1, pp. 586—
593 (Proc. NIPS-88). San Mateo, Calif.: Kaufmann.

Rogers, D. 1989b. Kanerva's sparse distributed memory: An associative memory
algorithm well-suited to the Connection Machine. Int. J. High Speed Computing
1(2):349-365.

Rogers, D. 1990a. Predicting weather using a Genetic Memory: A combination of
Kanerva's sparse distributed memory and Holland' s genetic algorithms. In D.S.
Touretzky, ed., Neural Information Processing Systems, Vol. 2:, pp. 55464
(Proc. NIPS-89). San Mateo, Calif.: Kaufmann.

Rogers, D. 1990b. BIRD: A Genera Interface for Sparse Distributed memory
Simulators. Report RIACS TR 90.3, Research Institute for Advanced Computer
Science, NASA Ames Research Center.

Rosenblatt, F. 1962. Principles of Neurodynamics. Washington, D.C.: Spartan.

Rumelhart, D.E., and McClelland, J. L., eds. 1986. Parallel Distributed Processing,
Vols. 1 and 2. Cambridge, Mass.: Bradford/MIT Press.

Saarinen, J., Lindell, M., Kotilainen, P, Tomberg, J., Kanerva, P., and Kaski, K.
1991a. Highly parallel hardware implementation of sparse distributed memory.
In T. Kohonen, K. Makisara, O. Simula, and J. Kangas, eds., Artificial Neural
Networks, Vol. 1, pp. 673-678 (Proc. ICANN-91, Helsinki). Amsterdam:
Elsevier/North—Holland.

Saarinen, J., Pohja, S., and Kaski, K. 1991b. Self-organization with Kanerva's
sparse distributed memory. In T. Kohonen, K. M&kisara, O. Simula, and
J. Kangas, eds., Artificial Neural Networks, Vol. 1, pp. 285-290 (Proc. ICANN-
91, Helsinki). Amsterdam: Elsevier/North—Holland.

Sejnowski, T.J., and Rosenberg, C.R. 1986. NETtalk: A Parallel Network that
Learnsto Read Aloud. Report JHU/EECS-86/01, Department of Electrical
Engineering and Computer Science, Johns Hopkins University. (Reprinted in

KANERVA / SDM AND RELATED MODELS / 02/02/02 / P. 40

J.A. Anderson and E. Rosenfeld, eds., Neurocomputing: Foundations of
Research, pp. 663—672. Cambridge, Mass.: MIT Press.)

Willshaw, D. 1981. Holography, associative memory, and inductive generalization.
InG.E. Hintonand J.A. Anderson, eds., Parallel Model s of Associative Memory;,
pp. 83-104. Hillsdale, N.J.: Erlbaum.

KANERVA / SDM AND RELATED MODELS / 02/02/02 / P. 41

Table 3.1
Encoding a 17-level Input Variable s, in 20 Bits (K = 4)

| nput bit

=4
-
<
n
>
@
pa

TBHPVCIJ QWDKRXE

.
'+ o+

OCoOoO~NOOUI~AWNEO

1
1
1
1

1

1

1

1

1

i

>
o8]
@)
o
m

KANERVA / SDM AND RELATED MODEL S /02/02/0 2 /Fig. 3.1

Ilustrations for “Sparse Distribute Memory and Related Models.”
Copyright © 1993 and 2002 by Pentti Kanerva <pkanerva@rni.org>

]
u
20% 6% 2%

Figure 3.1. Nine noisy words (20% noise) are stored, and the tenth is used as a retrieval cue.

KANERVA / SDM AND RELATED MODEL S /02/02/0 2 /Fig. 3.2

EEEEEEEEEEEREEEE
T T T A T
EEEEEEEEEEEEEEEE
mm
EEEEN
EEEEENEE 0
EEEEEEEE o
EEEEEEEE o
I
(42}
ENEEEEEE
EEE
o
o
Al
o
o
(40}

Figure 3.2. Recalling a stored sequence with a noisy (30% noise) retrieval cue.

1,000,000 locations

=

220

ADDRESS REGISTER

KANERVA / SDM AND RELATED MODEL S /02/02/0 2 /Fig. 3.3

20 bits

0 0O 01 1

N y
0 0O 0 0O 0
0 0O 0 0 1 0
0 0O 010 0
000 o1 1 1
0 0O 1 00 0
0 0O 1 0 1 0

A q
ADDRESS MATRIX :
M addresses

1 1 1 1 00 0
1 1 1 10 1 0
1 1 1 110 0
1 1 1 11 1 0

WORD-IN REGISTER

shading.

32 bits
010 110
U
0 0 1 0 0 1
1 1 1 1 1 1
1 00 010
010 110
0 00O 11 1
0 0 1 1 00

C
CONTENTS MATRIX

M x U bits
010 0 0O
1 1 1 1 00
110 o1 1
0 00O 0 00O
o110 --- 110

WORD-OUT REGISTER
32 bits

Figure 3.3. Organization of a random-access memory. The selected memory location is shown by

1,000,000 hard locations

<

KANERVA / SDM AND RELATED MODEL S /02/02/0 2 /Fig. 3.4

ADDRESS REGISTER

WORD-IN REGISTER

1,000 bits 1,000 bits

100 - 101 o110 - 110
l N d y l U
010 1 0 1 501 0 0 2-2 4 0 0
1 0 1 0 0 1 444 1 -1 -1 -1 1 3 -1
010 o1 1 550 0 1 1-3 -1 1 1
0 00O 1 0 1 447 1 -2 4 2 020
11 1 0 0 1 493 0 -1 1 1 -3 -1 -1
0 0O 110 531 0 2 0-4 0 20
ADDRESS MATRIX) CONTENTS MATRIX

M hard addresses M xU counters
1 1 1 0 0O 480 0 1 3 -1 3-3 5
1 00 1 00 446 1 1 1 -1 1 1-1
1 00 010 512 0 2 0-4 0 6-4
011 011 49 ol Mlo o o 000
Hamming distances / o ® — ~ — I~
T N O N - -
T M AN O
Activations (d = 447) : ' '

Sums l

Z lo10 -+ 110

WORD-OUT REGISTER
1,000 bits

Figure 3.4. Organization of a sparse distributed memory. The first selected memory location is
shown by shading.

KANERVA / SDM AND RELATED MODEL S /02/02/0 2 /Fig. 3.5

Figure 3.5. Address space, hard locations, and the set activated by x. H is the (Hamming) radius
of activation.

KANERVA / SDM AND RELATED MODEL S /02/02/0 2 /Fig. 3.6

W; at X;

ST at XT

Figure 3.6. Activation overlaps as weights for stored words. When reading at Xy, the sum Sy
includes one copy of the word W, from each hard location in the activation overlap (two copies
in the figure).

KANERVA / SDM AND RELATED MODEL S /02/02/0 2 /Fig. 3.8

G:D/VAI’I;,N

3

A @@_>

Figure 3.8. Four views of an artificial neuron.

KANERVA / SDM AND RELATED MODEL S /02/02/0 2 /Fig. 3.9

Figure 3.9. Sparse distributed memory as an artificial neural network (Fig. 3.7 redrawn in the style
of Fig. 3.4).

KANERVA / SDM AND RELATED MODEL S /02/02/0 2 /Fig. 3.10

Figure 3.10. Connections to an output neuron. Three output units are shown. The first unit is
drawn as a column through the contents matrix C, the middle unit shows the connections
explicitly, and the last unit corresponds to Figure 3.11.

KANERVA / SDM AND RELATED MODEL S /02/02/0 2 /Fig. 3.11

Figure 3.11. Sketch of the cortex of the cerebellum. Ba = basket cell, Cl = climbing fiber (black), Go =
Golgi cell, Gr = granule cell, Mo = mossy fiber (black), Pa = Parallel fiber, Pu = Purkinje cell (cross-
hatched), St = stellate cell. Synapses are shown with small circles and squares of the axon’s “color.”
Excitatory synapses are black or white, inhibitory synapses are cross-hatched or gray.

KANERVA / SDM AND RELATED MODEL S /02/02/0 2 /Fig.3.12

\

\

\

Figure 3.12. Sparse distributed memory’s resemblance to the cerebellum (Fig. 3.9 redrawn in the

style of Fig. 3.11; see also Fig. 3.10).

