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Abstract

A solution to the problem of representing compo-
sitional structure using distributed representations
is described. The method uses circular convolution
to associate items, which are represented by vec-
tors. Arbitrary variable bindings, short sequences
of various lengths, frames, and reduced represen-
tations can be compressed into a fixed width vec-
tor. These representations are items in their own
right, and can be used in constructing compositional
structures. The noisy reconstructions given by
convolution memories can be cleaned up by using a
separate associative memory that has good recon-
structive properties.

1 Introduction

Distributed representations [Hinton, 1984] are attractive
for a number of reasons. They offer the possibility of rep-
resenting concepts in a continuous space, they degrade
gracefully with noise, and they can be processed in a
parallel network of simple processing elements. How-
ever, the problem of representing compositional struc-
ture in distributed representations has been for some
time a prominent concern of both followers and critics
of the connectionist faith [Fodor and Pylyshyn, 1988;
Hinton, 1990] .

Using connectionist networks, e.g., back propagation
nets, Hopfield nets, Boltzmann machines, or Willshaw
nets, it is easy to represent associations of a fixed num-
ber of items. The difficulty with representing composi-
tional structure in all of these networks is that items and
associations are represented in different spaces. Hinton
[1990] discusses this problem and proposes a framework
in which “reduced descriptions” are used. This frame-
work requires that a number of vectors be compressed
(reduced) into a single vector of the same size as each
of the original vectors. This vector acts as a reduced
description of the set of vectors and itself can be a mem-
ber of another set of vectors. The reduction must be
reversible so that one can move in both directions in a
part-whole hierarchy. In this way, compositional struc-
ture is represented. However, Hinton does not suggest
any concrete way of performing this reduction mapping.

Some researchers have built models or designed frame-

30

works in which some some compositional structure is
present in distributed representations. For some exam-
ples see the papers of Touretzky, Pollack, or Smolensky
in [ALJ, 1990].

In this paper I propose a new method for representing
compositional structure in distributed representations.
Circular convolution is used to construct associations of
vectors. The representation of an association is a vec-
tor of the same dimensionality as the vectors which are
associated. This allows the construction of representa-
tions of objects with compositional structure. I call these
Holographic Reduced Representations (HRRs), since con-
volution and correlation based memories are closely re-
lated to holographic storage, and they provide an im-
plementation of Hinton’s [1990] reduced descriptions. I
describe how HRRs and error correcting associative item
memories can be used to build distributed connection-
ist systems which manipulate complex structures. The
item memories are necessary to clean up the noisy items
extracted from the convolution representations.

2 Assoclative memories

Associative memories are used to store associations be-
tween items which are represented is a distributed fash-
ion as vectors. Nearly all work on associative memory
has been concerned with storing items or pairs of items.

Convolution-correlation memories (sometimes referred
to as holographic-like) and matrix memories have been
regarded as alternate methods for implementing asso-
ciative memory [Willshaw, 1981; Murdock, 1983; Pike,
1984; Schonemann, 1987). Matrix memories have re-
ceived more interest, probably due to their relative sim-
plicity and their higher capacity in terms of the dimen-
sionality of the vectors being associated.

The properties of matrix memories are well under-
stood. Two of the best known matrix memories are
“Willshaw” networks [Willshaw, 1981] and Hopfield
networks[Hopfield, 1982]. Matrix memories can be used
to construct auto-associative (or “content addressable”)
memories for pattern correction and completion. They
can also be used to represent associations between two
vectors. After two vectors are associated one can be used
as a cue to retrieve the other.

There are three operations used in associative mem-
ories: encoding, decoding, and trace composition. The



encoding operation takes two item vectors and produces
a memory trace (a vector or a matrix). The decoding
operation takes a memory trace and a single item (the
cue), and produces the item that was originally associ-
ated with the cue, or a noisy version thereof. Memory
traces can be composed by addition or superposition.
The decoding operation will work with this sum of in-
dividual traces, but the retrieved items may be noisier.
In some models encoding and decoding are linear, e.g.,
Murdock [1983], in others decoding is non-linear, e.g.,
Hopfield [1982], and in others all the operations are non-
linear, e.g., Willshaw [1981].

To illustrate this, let I be the space of vectors repre-
senting items !, and T be the space of vectors or matrices
representing memory traces. Let K : I x I — T be the
encoding operation, >: I x T — I be the decoding op-
eration, and B : T x T — T be the trace composition
operation. Let a, b, ¢, d, e, and f be item vectors, and
let T; be memory traces.

The association of two items a and b is represented by
the trace 7} = alkb. We can recover a from 77 by using
the decoding operation on 77 and the cue b: b > T
gives a, or a noisy version of it. Noisy versions of b can
also be used as cues. Depending on the properties of the
particular scheme, the retrieved vector will be more or
less similar to a.

A trace can represent a number of associations, e.g.,
T, = (aXkb)H (cXd)H (e ®f). An item from any pair
can be used as a cue to recover the other item of the pair,
e.g., ¢ > Ty gives a noisy version of d. The noisiness of
the recovered vector increases with the number of asso-
ciations stored in a single memory trace. The number of
associations that can be represented usefully in a single
trace is usually referred to as the capacity of the memory
model.

In matrix memories the encoding operation is the
outer product, and in convolution memories the encod-
ing operation is convolution. Addition and superposition
have both been used as the trace composition operation
in matrix and convolution memories.

2.1 Convolution-correlation memories

In nearly all convolution memory models the ape-
riodic convolution operation has been used to form
associations.? The aperiodic convolution of two vectors
with n elements each results in a vector with 2n — 1
elements. This result can be convolved with another
vector (recursive convolution); and if that vector has n
elements, the result has 3n—2 elements. Thus the result-
ing vectors grow with recursive convolution. This same
growing property is exhibited in a much more dramatic
form by both matrix memories and Smolensky’s [1990]
tensor product representations.

Researchers have used three solutions to this problem
of growth with recursive associations - (a) limit the depth
of composition (Smolensky [1990]), (b) discard elements

'There are usually distributional constraints on the ele-
ments of the vectors, e.g., the elements should be drawn from
independent distributions.

2The exception is the non-linear correlograph of Willshaw
[1981], first published in 1969.
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outside the n central ones (Metcalfe [1982]), and (c) use
infinite vectors (Murdock [1982]).

The growth problem can be avoided entirely by the
use of circular convolution, an operation well known in
signal processing. The result of the circular convolution
of two vectors of n elements has just n elements. Since
circular convolution does not have the growth property,
it can be used recursively in connectionist systems with
fixed width vectors.

There is a close relationship between matrix and
convolution memories. A convolution of two vectors
(whether circular or aperiodic) can be regarded as a com-
pression of the outer product of those two vectors. The
compression is achieved by summing along the trans-
diagonals of the outer product.

Circular convolution, denoted by the symbol &, is illus-
trated in Figure 1. Each of the small circles represents
the product of a pair of elements from a and b, and these
are summed along the indicated diagonals. ~ While the
circular convolution operation is straightforward, what
is remarkable is that circular correlation, @, (illustrated
in Figure 2) is its approximate inverse.® 1If a pair of
vectors is convolved together to give a “memory trace”,
then one member of the pair, the “cue”, can be corre-
lated with the trace to produce the other member of the
pair. Suppose we have a trace which is the convolution
of the cue with another vector, t = ¢®x. Then corre-
lation allows the reconstruction of a noisy version of x
from t and ¢: y = c@t where y &~ x. The correlation
operation also has aperiodic and circular versions, which
are approximate inverses for the respective convolution
operations.

Circular convolution is defined as: ® : R” x R™ — R",
such that t = c®x where {; = ZZ;; ck k. Subscripts
are interpreted modulo n, which gives the operation its
circular nature.

t=c®x

co%o + c2x1 + c1x2
C1Zo + CoT1 + C22
C2Zo + C1Z1 + Cox2

n—1
t; = E CkTj—k
k=0

foryj=0ton—1
(Subscripts are modulo-n)

Figure 1: Circular convolution represented as a compressed
outer product for n = 3.

Circular correlation is defined as: @ : R* xR™ — R",
such that y = c@t where y; = S 020 cxtpp;.

Convolution can be computed in O(n logn) time using
Fast Fourier Transforms (FFTs). The method is simple
and well known: a®b = f~1(fa® fb), where f is a dis-
crete Fourier transform (its range is a vector of complex
numbers), f~1 is its inverse, and ® is the component-
wise multiplication of two vectors.

3Under certain conditions on the distribution of elements
in the vectors.



y=c@t
co ! 2 colo +c1t1 + cata
cato 4+ cot1 +cita
cito + cat1 + cota

Yo
Y1

n—1
Y = chtkﬂ
tg k=0
fory=0ton—1

Y2 Y1 yo  (Subscripts are modulo-n)

Figure 2: Circular correlation represented as a compressed
outer product for n = 3.

2.2 Distributional constraints on vectors

For correlation to decode convolution the elements of
each vector must be independently distributed with
mean zero and variance 1/n so that the euclidean length
of each vector has a mean of one. Examples of suit-
able distributions are the normal distribution and the
discrete distribution with values equiprobably #1/y/n.
The analysis of signal strength and capacity depends on
elements of vectors being independently distributed.
The tension between these constraints and the need
for vectors to have meaningful features is discussed in

Plate [1991].

2.3 How much information is stored

Since a convolution trace only has n numbers in it, it
may seem strange that several pairs of vectors can be
stored in it, since each of those vectors also has n num-
bers. The reason is that the vectors are stored with very
poor fidelity; to successfully store a vector we only need
to store enough information to discriminate it from the
other vectors. If M vectors are used to represent M
different (equiprobable) items, then about 2k log M bits
of information are needed to represent k pairs of those
items.* The size of the vectors does not enter into this
calculation, only the number of vectors matters.

3 Addition Memories

One of the simplest ways to store a set of vectors is to add
them together. Such storage does not allow for recall or
reconstruction of the stored items, but it does allow for
recognition, i.e., determining whether a particular item
has been stored or not.

The principle of addition memory can be stated as
“adding together two high dimensional vectors gives
something which is similar to each and not very similar
to anything else.”® This principle underlies both convo-
lution and matrix memories and the same sort of analysis
can be applied to the linear versions of each. Addition
memories are discussed at greater length in Plate [1991]

*Actually, slightly less than 2klog M bits are required
since the pairs are unordered.

5This applies to the degree that the elements of the vectors
are randomly and independently distributed.

4 The need for reconstructive item
memories

If a system using convolution representations is to do
some sort of recall (as opposed to recognition), then it
must have an additional error correcting associative item
memory. This is needed to clean up the noisy vectors re-
trieved from the convolution traces. This reconstructive
memory must store all the items that the system could
produce. When given as input a noisy version of one
of those items it must either output the closest item or
indicate that the input is not close enough to any of the
stored items.

For example, suppose the system is to store pairs of
letters, and suppose each one of the 26 letters is repre-
sented by the random vectors a, b, ..., z. The item mem-
ory must store these 26 vectors and must be able to out-
put the closest item for any input vector (the “clean” op-
eration). Such a system is shown in Figure 3. The trace
is a sum of convolved pairs, e.g., t = a®b+c®d +e®f.
When the system is given one item as an input cue its
task is to output the item that cue was associated with
in the trace. It should also output a scalar value (the
strength) which is high when the input cue was a mem-
ber of a pair, and low when the input cue was not a
member of a pair. When given a as a cue it should pro-
duce b and a high strength. When given g as a cue
it should give a low strength. The item it outputs is
unimportant when the strength is low.

> Output Item
(@) @ean
/ Strength

Figure 3: A hetero-associator machine.

Trace

Input Cue

The convolution trace stores only a few associations
or items, and the item memory stores many items. The
item memory acts as an auto-associator to clean up the
noisy items retrieved from the convolution trace.

The exact method of implementation of the item mem-
ory is unimportant. Hopfield networks are probably not
a good candidate because of their low capacity. Kanerva
networks [Kanerva, 1988] have sufficient capacity, but
can only store binary vectors.® For experiments I have
been using a nearest neighbor matching memory.

5 Representing more complex structure

Pairs of items are easy to represent in any type of asso-
ciative memory, but convolution memory is also suited
to the representation of more complex structure.

5.1 Sequences
Sequences can be represented in a number of ways using

convolution encoding. An entire sequence can be repre-

5 Although most of this paper assumes items are repre-
sented as real vectors, convolution memories also work with
binary vectors [Willshaw, 1981].



sented in one memory trace (providing the soft capacity
limits are not exceeded), or chunking can be used to rep-
resent a sequence of any length in a number of memory
traces.

Murdock [1983; 1987] proposes a chaining method of
representing sequences in a single memory trace, and
models a large number of psychological phenomena with
it. The technique used stores both item and pair infor-
mation in the memory trace, for example, if the sequence
of vectors to be stored is abe, then the trace is

ara+ f1a®b + asb + sb®c + ase,

where «; and (; are suitable weighting constants less
than 1, generated from a two or three underlying param-
eters, with a; > a;41. The retrieval of the sequence
begins with retrieving the strongest component of the
trace, which will be a. From there the retrieval is by
chaining — correlating the trace with the current item
to retrieve the next item. The end of the sequence is de-
tected when the correlation of the trace with the current
item is not similar to any item in the item memory.

Another way to represent sequences is to use the en-
tire previous sequence as context rather than just the
previous item [Murdock, 1987]. This makes it possible
to store sequences with repeated of items. To store abc,
the trace is: a4+ a®b + a®b®c. This type of sequence
can be retrieved in a similar way to the previous, except
that the retrieval cue must be built up using convolu-
tions.

The retrieval of later items in both these representa-
tions could be improved by subtracting off prefix com-
ponents as the items in the sequence are retrieved.

Yet another way to represent sequences is to use a
fixed cue for each position of the sequence, so to store
abc, the trace is: pi®a + p2®b + ps®c. The retrieval
(and storage) cues p; can be arbitrary or generated in
some manner from a single vector, e.g., p; = (p)*.”

5.2 Chunking of sequences

All of the above methods have soft limits on the length
of sequences that can be stored. As the sequences get
longer the noise in the retrieved items increases until
the items are impossible to identify. This limit can be
overcome by chunking — creating new “non terminal”
items representing subsequences [Murdock, 1987].

The second sequence representation method is the
most suitable one to do chunking with. Suppose we
want to represent the sequence abcdefgh. We can cre-
ate three new items representing subsequences:

Sabe — a+a®b+ad®b®c
S¢e = d+doe
sigh = f+feg+fegah

These new items must be added to the item memory and
marked in some way as non-terminals. The representa-
tion for the whole sequence is:

Sabe + Sabc®Sqe + sabc®sde®sfgh .

“The cues should be normalz



frame® as a filler instead of fpo: in the frame built in the

revious section. For example, “Spot ran.”:
)

trunning = lrun + ragent®fspot

could be used in a “seeing” frame “Dick saw Spot run.”:

tseeing = lsee + ragent®fdick + robject®trunning
= L+ ragent®fdick
+ robject® (lrun + Tagent ®fspot)

This representation can be manipulated with or with-
out chunking. Without chunking, we could extract the
agent of the object by correlating with ropject ® Tagent.
Using chunking, we could extract the object by correlat-
ing with rpject, clean it up, and then extract its agent,
giving a less noisy vector than without chunking.

This implements Hinton’s idea [1990] of a system being
able to focus attention on constituents as well as being
able to have the whole meaning present at once. It also
suggests the possibility of sacrificing accuracy for speed
— if chunks are not cleaned up the retrievals are less
accurate.

7 Simple Machines that use HRRs

In this section two simple machines that operate on com-
plex convolution representations are described. Both of
these machines have been successfully simulated on a
convolution calculator using vectors with 1024 elements.

7.1 Role/filler selector

To manipulate frames with roles and fillers one must
be able to select the appropriate roles and fillers before
convolving them. I describe here a way of extracting
the most appropriate role from an uninstantiated frame.
The most appropriate role for a particular filler might
be either the “first” role in the frame, or the role that
combines best with the given filler. Both of these selec-
tion criteria can be combined in a single mechanism. An
uninstantiated frame is stored as the sum of the roles and
a frame label. Each role and filler also must be stored
separately in item memory.

Let the uninstantiated frame be fl4+air;+asro+asrs.
The task is to select the role that combines best with f,
the filler. Suppose there is some item ro®f’ in the item
memory, such that f/ is quite similar to f. The presence
of a similar binding in the item memory defines r; as the
“best fitting” role for f.1°

If the roles in the frame should be selected according to
best fit, then the a; should be approximately equal, but
if ry should be selected first, then a3 should be greater.

The selection of the role is done by convolving the
uninstantiated frame with the potential filler, i.e., f®
(Bl 4+ air1 + agrs + agrs). This is cleaned up in item
memory to give ro®f’, which is then correlated with f

involving convolution products that has some similarity to
the representation suggested here.

?Normalization of lengths of vectors becomes an issue, but
I do not consider this for lack of space.

0This form of generalization by similarity can be used
extensively.

to give a vector which can be written as yry + vyoise
where 7 and the magnitude of the noise depend on the
similarity of f to f’.

This result is added to the uninstantiated frame to give
Bl4+air; 4+ (a2 +7)ra + asrs+vaeise. The strongest role
can be selected by cleaning up in item memory. Which
is strongest will depend on the relative strengths of aj,
(a2 +7), and ag, and the value of 4 in turn depends on
the similarity of f/ to f.

The machine that accomplishes this operation 1is
shown in Figure 4.

Uninstantiated
Frame \ o
\
role
(@D~ (D~Cea

Figure 4: A role selection mechanism

Filler

7.2 Chunked sequence readout machine

A machine that reads out the chunked sequences de-
scribed in Section 5.2 can be built using two buffers, a
stack, a classifier, a correlator, a clean up memory, and
three gating paths. The classifier tells whether the item
most prominent in the trace is a terminal, a non-terminal
(chunk) or nothing. At each iteration the machine ex-
ecutes one of three action sequences depending on the
output of the classifier. The stack could be implemented
in any of a number of ways; including the way suggested
in [Plate, 1991] , or in a network with fast weights. The
machine is shown in Figure 5.

The control loop for the chunked sequence readout
machine is:

Loop: (until stack gives END signal)
Clean up the trace to recover most prominent item:
x = Clean(t).
Classify x as a terminal, non-terminal, or nothing
(in which case “pop” is the appropriate action) and
do the appropriate of the following action sequences.
Terminal:
1 Ttem x is on output. T1 gates path to replace
trace by its follower: t « x@(t — x).
Non-terminal:
1 Signal N1 tells stack to push the follower of the
non terminal: s < push(s,x®(t — x)).
2 Signal N2 gates path to replace trace by the
non-terminal: t + x.
Pop:
1 Signal P1 gates path to replace trace by top of
stack: t < top(s).
2 Signal P2 tells stack to discard top of stack:
s + pop(s). Stack gives END signal if empty.

The chunked sequence readout machine is an example
of a system that can have the whole meaning present
and that can also focus attention on constituents.
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Figure 5: A chunked sequence readout machine.

8 Mathematical properties

Mathematical properties of circular convolution and cor-
relation are discussed in Plate [1991], including: alge-
braic properties; the reason convolution is an approx-
imate inverse for correlation; the existence and useful-
ness of exact inverses of convolutions; and the variances
of dot products of various convolution products.

9 Discussion

Circular convolution is a bilinear operation, and one con-
sequence of the linearity is low storage efficiency. How-
ever, the storage efficiency is high enough to be usable
and scales linearly. Convolution is endowed with several
positive features by virtue of its linear properties. One
is that it can be computed very quickly using FFTs. An-
other is that analysis of the capacity, scaling, and gener-
alization properties is straightforward. Another is that
there is a possibility that a system using HRRs could
retain ambiguity while processing ambiguous input.

Convolution could be used as a fixed mapping in a con-
nectionist network to replace one or more of the usual
weight-matrix by vector mappings. Activations could be
propagated forward very quickly using FFTs, and gra-
dients could be propagated backward very quickly us-
ing FFTs as well. Such a network could learn to take
advantage of the convolution mapping and could learn
distributed representations for its inputs.

Memory models using circular convolution provide
a way of representing compositional structure in dis-
tributed representations. The operations involved are
linear and the properties of the scheme are relatively easy
to analyze. There is no learning involved and the scheme
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works with a wide range of vectors. Systems employ-
ing this representation need to have an error-correcting
auto-associative memory.
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