Bibliography

The bibliography (below) contains sources of information which may not be included in the References. (Most of the items listed below are not explicitly cited in text on the website).

Abdelgabar2019

Abdel R. Abdelgabar, Judith Suttrup, Robin Broersen, Ritu Bhandari, Samuel Picard, Christian Keysers, Chris I. De Zeeuw, and Valeria Gazzola. Action perception recruits the cerebellum and is impaired in patients with spinocerebellar ataxia. Brain, 142:3791–3805, 12 2019. doi:10.1093/brain/awz337.

Albus1971

James S Albus. A theory of cerebellar function. Mathematical Biosciences, 1971.

Amemiya2019

Kaoru Amemiya, Tomoyo Morita, Daisuke N. Saito, Midori Ban, Koji Shimada, Yuko Okamoto, Hirotaka Kosaka, Hidehiko Okazawa, Minoru Asada, and Eiichi Naito. Local-to-distant development of the cerebrocerebellar sensorimotor network in the typically developing human brain: a functional and diffusion mri study. Brain Structure and Function, 224:1359–1375, 4 2019. doi:10.1007/s00429-018-01821-5.

Apps2005

Richard Apps and Martin Garwicz. Anatomical and physiological foundations of cerebellar information processing. Nature Reviews Neuroscience, 6:297–311, 4 2005. doi:10.1038/nrn1646.

Apps2013

Richard Apps and Thomas C. Watson. Cerebro-cerebellar connections. Handbook of the Cerebellum and Cerebellar Disorders, pages 1131–1154, 1 2013. doi:10.1007/978-94-007-1333-8_48.

Ashida2018

Reiko Ashida, Nadia L. Cerminara, Jon Brooks, and Richard Apps. Principles of organization of the human cerebellum: macro- and microanatomy. Handbook of Clinical Neurology, 154:45–58, 1 2018. doi:10.1016/B978-0-444-63956-1.00003-5.

Bagnall2013

Martha Bagnall, Sascha du Lac, and Michael Mauk. Chapter 31 - cerebellum. Fundamental Neuroscience (Fourth Edition), 2013. doi:http://dx.doi.org/10.1016/B978-0-12-385870-2.00031-7.

Barmack2013

Neal H. Barmack and Vadim Yakhnitsa. Vestibulocerebellar connections. Handbook of the Cerebellum and Cerebellar Disorders, pages 357–376, 1 2013. doi:10.1007/978-94-007-1333-8_18.

Beckinghausen2019

Jaclyn Beckinghausen and Roy V. Sillitoe. Insights into cerebellar development and connectivity. Neuroscience Letters, 688:2–13, 1 2019. doi:10.1016/j.neulet.2018.05.013.

Benagiano2018

Vincenzo Benagiano, Anna Rizzi, Loredana Lorusso, Paolo Flace, Matteo Saccia, Raffaele Cagiano, Domenico Ribatti, Luisa Roncali, and Glauco Ambrosi. The functional anatomy of the cerebrocerebellar circuit: a review and new concepts. Journal of Comparative Neurology, 526:769–789, 4 2018. doi:10.1002/cne.24361.

Bengtsson2013

Fredrik Bengtsson and Germund Hesslow. Feedback control in the olivo-cerebellar loop. Handbook of the Cerebellum and Cerebellar Disorders, pages 1079–1100, 1 2013. doi:10.1007/978-94-007-1333-8_45.

Bengtsson2019

Fredrik Bengtsson, Anders Rasmussen, and Germund Hesslow. Feedback control in the olivocerebellar loop. Handbook of the Cerebellum and Cerebellar Disorders, pages 1–24, 2019. doi:10.1007/978-3-319-97911-3_45-2.

Billings2014

Guy Billings, Eugenio Piasini, Andrea Lorincz, Zoltan Nusser, and R. Angus Silver. Network structure within the cerebellar input layer enables lossless sparse encoding. Neuron, 83:960–974, 8 2014. doi:10.1016/j.neuron.2014.07.020.

Birnstiel2009

S. Birnstiel, N. T. Slater, D. R. McCrimmon, E. Mugnaini, and N. A. Hartell. Voltage-dependent calcium signaling in rat cerebellar unipolar brush cells. Neuroscience, 162:702–712, 9 2009. doi:10.1016/j.neuroscience.2009.01.051.

Bjaalie1992

Jan G Bjaalie. Organization of the pontine nuclei. Neuroscience Research, 13:83–118, 1992.

Bjaalie1997

Jan G Bjaalie. Cat pontocerebellar network: numerical capacity and axonal collateral branching of neurones in the pontine nuclei projecting to individual parafloccular folia. Neuroscience Research, 27:199–210, 1997.

Blatt2013

Gene J. Blatt, Adrian L. Oblak, and Jeremy D. Schmahmann. Cerebellar connections with limbic circuits: anatomy and functional implications. Handbook of the Cerebellum and Cerebellar Disorders, pages 479–496, 1 2013. doi:10.1007/978-94-007-1333-8_22.

BlazqezPaPastorAM2013

Pablo M. Blázquez and Angel M. Pastor. Cerebellar control of eye movements. Handbook of the Cerebellum and Cerebellar Disorders, pages 1155–1174, 1 2013. doi:10.1007/978-94-007-1333-8_49.

Boele2016

H. J. Boele, M. M. Ten Brinke, and C. I. De Zeeuw. Classical conditioning of timed motor responses: neural coding in cerebellar cortex and cerebellar nuclei. The Neuronal Codes of the Cerebellum, pages 53–96, 2016. doi:10.1016/B978-0-12-801386-1.00003-4.

Bosman2009

L. W.J. Bosman and A. Konnerth. Activity-dependent plasticity of developing climbing fiber-purkinje cell synapses. Neuroscience, 162:612–623, 9 2009. doi:10.1016/j.neuroscience.2009.01.032.

Bostan2013

Andreea C. Bostan, Richard P. Dum, and Peter L. Strick. Cerebellar networks with the cerebral cortex and basal ganglia. Trends in Cognitive Sciences, 17:241–254, 5 2013. doi:10.1016/j.tics.2013.03.003.

Bostan+StrickPL-2013

Andreea C. Bostan and Peter L. Strick. Cerebellar outputs in non-human primates: an anatomical perspective using transsynaptic tracers. Handbook of the Cerebellum and Cerebellar Disorders, pages 549–570, 1 2013. doi:10.1007/978-94-007-1333-8_25.

Bower2013

James M. Bower. Computational structure of the cerebellar molecular layer. Handbook of the Cerebellum and Cerebellar Disorders, pages 1359–1380, 1 2013. doi:10.1007/978-94-007-1333-8_60.

Bracha2009

V. Bracha, S. Zbarska, K. Parker, A. Carrel, G. Zenitsky, and J. R. Bloedel. The cerebellum and eye-blink conditioning: learning versus network performance hypotheses. Neuroscience, 162:787–796, 9 2009. doi:10.1016/j.neuroscience.2008.12.042.

Brissenden2018

James A. Brissenden, Sean M. Tobyne, David E. Osher, Emily J. Levin, Mark A. Halko, and David C. Somers. Topographic cortico-cerebellar networks revealed by visual attention and working memory. Current Biology, 28:3364–3372.e5, 11 2018. doi:10.1016/j.cub.2018.08.059.

Buckner2013

Randy L. Buckner. The cerebellum and cognitive function: 25 years of insight from anatomy and neuroimaging. Neuron, 80:807–815, 10 2013. doi:10.1016/j.neuron.2013.10.044.

Cengiz2016

Bülent Cengiz and H. Evren Boran. The role of the cerebellum in motor imagery. Neuroscience Letters, 617:156–159, 3 2016. doi:10.1016/j.neulet.2016.01.045.

Cerminara2005

N. L. Cerminara, A. L. Edge, D. E. Marple-Horvat, and R. Apps. The lateral cerebellum and visuomotor control. Progress in Brain Research, 148:213–226, 2005. doi:10.1016/S0079-6123(04)48018-2.

Cerminara2013

Nadia L. Cerminara, Hanako Aoki, Michaela Loft, Izumi Sugihara, and Richard Apps. Structural basis of cerebellar microcircuits in the rat. Journal of Neuroscience, 33:16427–16442, 2013. doi:10.1523/JNEUROSCI.0861-13.2013.

Cerminara2015

Nadia L. Cerminara, Eric J. Lang, Roy V. Sillitoe, and Richard Apps. Redefining the cerebellar cortex as an assembly of non-uniform purkinje cell microcircuits. Nature Reviews Neuroscience, 16:79–93, 1 2015. doi:10.1038/nrn3886.

Cesa2009

R. Cesa and P. Strata. Axonal competition in the synaptic wiring of the cerebellar cortex during development and in the mature cerebellum. Neuroscience, 162:624–632, 9 2009. doi:10.1016/j.neuroscience.2009.02.061.

CesaRaStrataP2005

Roberta Cesa and Piergiorgio Strata. Axonal and synaptic remodeling in the mature cerebellar cortex. Progress in Brain Research, 2005. doi:10.1016/S0079-6123(04)480005-4.

Chabrol2019

Francois P. Chabrol, Antonin Blot, and Thomas D. Mrsic-Flogel. Cerebellar contribution to preparatory activity in motor neocortex. Neuron, 103:506–519.e4, 8 2019. doi:10.1016/j.neuron.2019.05.022.

Chaisanguanthum2014

Kris S. Chaisanguanthum, Mati Joshua, Javier F. Medina, William Bialek, and Stephen G. Lisberger. The neural code for motor control in the cerebellum and oculomotor brainstem. eNeuro, 11 2014. doi:10.1523/ENEURO.0004-14.2014.

Chandler2013

Daniel J. Chandler, Shevon E. Nicholson, Gerard Zitnik, and Barry D. Waterhouse. Norepinephrine and synaptic transmission in the cerebellum. Handbook of the Cerebellum and Cerebellar Disorders, pages 895–914, 1 2013. doi:10.1007/978-94-007-1333-8_37.

Cicirata2005

Federico Cicirata, Maria Francesca Serapide, Rosalba Parenti, Maria Rosita Pantò, Agata Zappalà, Annalisa Nicotra, and Deborah Cicero. The basilar pontine nuclei and the nucleus reticularis tegmenti pontis subserve distinct cerebrocerebellar pathways. Progress in Brain Research, 148:259–282, 2005. doi:10.1016/S0079-6123(04)48021-2.

Coombs2009

I. D. Coombs and S. G. Cull-Candy. Transmembrane ampa receptor regulatory proteins and ampa receptor function in the cerebellum. Neuroscience, 162:656–665, 9 2009. doi:10.1016/j.neuroscience.2009.01.004.

Cooper2010

Richard P Cooper. Forward and inverse models in motor control and cognitive control. Proceedings of the International Symposium on AI-Inspired Biology, 2010.

Courtemanche2016

Richard Courtemanche and Ariana Frederick. A spatiotemporal hypothesis on the role of 4- to 25-hz field potential oscillations in cerebellar cortex. The Neuronal Codes of the Cerebellum, pages 219–238, 2016. doi:10.1016/B978-0-12-801386-1.00010-1.

ReegDG+2-1971

’ D G R egg, J J S guin, and M Wiesendanger’. Effects of electrical stimulation of somatosensory and motor areas of the cerebral cortex on neurones of the pontine nuclei in squirrel monkeys. Nuuro.wunw, 2:923–927, 1971.

DAngeloEp6y2009

E. D’Angelo, S. K.E. Koekkoek, P. Lombardo, S. Solinas, E. Ros, J. Garrido, M. Schonewille, and C. I. De Zeeuw. Timing in the cerebellum: oscillations and resonance in the granular layer. Neuroscience, 162:805–815, 9 2009. doi:10.1016/j.neuroscience.2009.01.048.

DAngeloED+5-2009

E. D’Angelo, S. K.E. Koekkoek, P. Lombardo, S. Solinas, E. Ros, J. Garrido, M. Schonewille, and C. I. De Zeeuw. Timing in the cerebellum: oscillations and resonance in the granular layer. Neuroscience, 162:805–815, 9 2009. doi:10.1016/j.neuroscience.2009.01.048.

DAngeloEp8y2011

E. D’Angelo, P. Mazzarello, F. Prestori, J. Mapelli, S. Solinas, P. Lombardo, E. Cesana, D. Gandolfi, and L. Congi. The cerebellar network: from structure to function and dynamics. Brain Research Reviews, 66:5–15, 1 2011. doi:10.1016/j.brainresrev.2010.10.002.

DAngeloE2014

Egidio D’Angelo. The organization of plasticity in the cerebellar cortex: from synapses to control. Progress in Brain Research, 210:31–58, 2014. doi:10.1016/B978-0-444-63356-9.00002-9.

DAngeloE2018

Egidio D’Angelo. Physiology of the cerebellum. Handbook of Clinical Neurology, 154:85–108, 1 2018. doi:10.1016/B978-0-444-63956-1.00006-0.

DAngeloE-2018

Egidio D’Angelo. Physiology of the cerebellum. Handbook of Clinical Neurology, 154:85–108, 1 2018. doi:10.1016/B978-0-444-63956-1.00006-0.

DAngeloEp32016

Egidio D’Angelo, Stefano Masoli, Martina Rizza, and Stefano Casali. Single-neuron and network computation in realistic models of the cerebellar cortex. The Neuronal Codes of the Cerebellum, pages 239–260, 2016. doi:10.1016/B978-0-12-801386-1.00011-3.

DMelloAMp3y2020

Anila M. D’Mello, Tracy M. Centanni, John D.E. Gabrieli, and Joanna A. Christodoulou. Cerebellar contributions to rapid semantic processing in reading. Brain and Language, 9 2020. doi:10.1016/j.bandl.2020.104828.

Daniel2013

Hervé Daniel and F. Crepel. Purkinje neurons: synaptic plasticy. Handbook of the Cerebellum and Cerebellar Disorders, pages 793–808, 1 2013. doi:10.1007/978-94-007-1333-8_32.

DashS+ThierP-2014

Suryadeep Dash and Peter Thier. Cerebellum-dependent motor learning. lessons from adaptation of eye movements in primates. Progress in Brain Research, 210:121–155, 2014. doi:10.1016/B978-0-444-63356-9.00006-6.

Dash2014

Suryadeep Dash and Peter Thier. Cerebellum-dependent motor learning. lessons from adaptation of eye movements in primates. Progress in Brain Research, 210:121–155, 2014. doi:10.1016/B978-0-444-63356-9.00006-6.

deGruijlJR+2-2009

J. R. de Gruijl, P. van der Smagt, and C. I. De Zeeuw. Anticipatory grip force control using a cerebellar model. Neuroscience, 162:777–786, 9 2009. doi:10.1016/j.neuroscience.2009.02.041.

Dean2013

Paul Dean, Henrik Jörntell, and John Porrill. Adaptive filter models. Handbook of the Cerebellum and Cerebellar Disorders, pages 1315–1336, 1 2013. doi:10.1007/978-94-007-1333-8_58.

Dean2019

Paul Dean, Henrik Jörntell, and John Porrill. Adaptive filter models. Handbook of the Cerebellum and Cerebellar Disorders, pages 1–12, 2019. doi:10.1007/978-3-319-97911-3_58-2.

Dean2014

Paul Dean and John Porrill. Decorrelation learning in the cerebellum. computational analysis and experimental questions. Progress in Brain Research, 210:157–192, 2014. doi:10.1016/B978-0-444-63356-9.00007-8.

Dean2010

Paul Dean, John Porrill, Carl Fredrik Ekerot, and Henrik Jörntell. The cerebellar microcircuit as an adaptive filter: experimental and computational evidence. Nature Reviews Neuroscience, 11:30–43, 1 2010. doi:10.1038/nrn2756.

Decety1990

Jean Decety, Hans Sjfholm, Erik Ryding, Georg Stenberg, and David H Ingvar. The cerebellum participates in mental activity: tomographic measurements of regional cerebral blood flow. Brain Research, 535:313–317, 1990.

Diedrichsen2019

Jörn Diedrichsen, Maedbh King, Carlos Hernandez-Castillo, Marty Sereno, and Richard B. Ivry. Universal transform or multiple functionality? understanding the contribution of the human cerebellum across task domains. Neuron, 102:918–928, 6 2019. doi:10.1016/j.neuron.2019.04.021.

Dum2003

Richard P. Dum and Peter L. Strick. An unfolded map of the cerebellar dentate nucleus and its projections to the cerebral cortex. Journal of Neurophysiology, 89:634–639, 1 2003. doi:10.1152/jn.00626.2002.

DangeloE2013

Egidio D’angelo. Cerebellar granule cell. Handbook of the Cerebellum and Cerebellar Disorders, pages 767–792, 1 2013. doi:10.1007/978-94-007-1333-8_31.

DMelloAMaRozenkrantL2020

Anila M. D’Mello and Liron Rozenkrantz. Neural mechanisms for prediction: from action to higher-order cognition. Journal of Neuroscience, 40:5158–5160, 7 2020. doi:10.1523/JNEUROSCI.0732-20.2020.

Eagleman2004

David M. Eagleman, John E. Jacobson, and Terrence J. Sejnowski. Perceived luminance depends on temporal context. Nature, 428:854–856, 4 2004. doi:10.1038/nature02467.

Ebner2013

Timothy J. Ebner. Cerebellum and internal models. Handbook of the Cerebellum and Cerebellar Disorders, pages 1281–1296, 1 2013. doi:10.1007/978-94-007-1333-8_56.

Francis1976

B. A. Francis and W. M. Wonham. The internal model principle of control theory. Automatica, 12:457–465, 1976. doi:10.1016/0005-1098(76)90006-6.

Fujita1982

M Fujita. Adaptive filter model of the cerebellum. Biol. Cybern, 45:195–206, 1982.

Fujita1982b

M Fujita. Biological cybernetics simulation of adaptive modification of the vestibulo-ocular reflex with an adaptive filter model of the cerebellum. Biol. Cybern, 45:207–214, 1982.

Galliano2013

Elisa Galliano, Zhenyu Gao, Martijn Schonewille, Boyan Todorov, Esther Simons, Andreea S. Pop, Egidio D’Angelo, Arn M.J.M. Van Den Maagdenberg, Freek E. Hoebeek, and Chris I. De Zeeuw. Silencing the majority of cerebellar granule cells uncovers their essential role in motor learning and consolidation. Cell Reports, 3:1239–1251, 4 2013. doi:10.1016/j.celrep.2013.03.023.

Galliano2014

Elisa Galliano and Chris I. De Zeeuw. Questioning the cerebellar doctrine. Progress in Brain Research, 210:59–77, 2014. doi:10.1016/B978-0-444-63356-9.00003-0.

Gao2006

Wangcai Gao, Gang Chen, Kenneth C. Reinert, and Timothy J. Ebner. Cerebellar cortical molecular layer inhibition is organized in parasagittal zones. Journal of Neuroscience, 26:8377–8387, 8 2006. doi:10.1523/JNEUROSCI.2434-06.2006.

Gao2018

Zhenyu Gao, Courtney Davis, Alyse M. Thomas, Michael N. Economo, Amada M. Abrego, Karel Svoboda, Chris I. De Zeeuw, and Nuo Li. A cortico-cerebellar loop for motor planning. Nature, 563:113–116, 11 2018. doi:10.1038/s41586-018-0633-x.

Glickstein2009

M. Glickstein, P. Strata, and J. Voogd. Cerebellum: history. Neuroscience, 162:549–559, 9 2009. doi:10.1016/j.neuroscience.2009.02.054.

Glickstein2007

Mitch Glickstein. What does the cerebellum really do? Current Biology, 10 2007. doi:10.1016/j.cub.2007.08.009.

Glickstein2013

Mitchell Glickstein. Visual circuits from cerebral cortex to cerebellum; the link through pons. Handbook of the Cerebellum and Cerebellar Disorders, pages 469–478, 1 2013. doi:10.1007/978-94-007-1333-8_21.

Glickstein2008

Mitchell Glickstein and Karl Doron. Cerebellum: connections and functions. Cerebellum, 7:589–594, 12 2008. doi:10.1007/s12311-008-0074-4.

Glickstein1985

Mitchell Glickstein, Jack G May, and Barbara E Mercier. Corticopontine projection in the macaque: the distribution of labelled cortical cells after large injections of horseradish peroxidase in the pontine nuclei. THE JOURNAL OF COMPARATIVE NEUROLOGY, 235:343–359, 1985.

Grewe2011

Jan Grewe, Thomas Wachtler, and Jan Benda. A bottom-up approach to data annotation in neurophysiology. Frontiers in neuroinformatics, 5:16, 8 2011. URL: http://www.ncbi.nlm.nih.gov/pubmed/21941477, doi:10.3389/fninf.2011.00016.

DeGruijlJRa4y2013

J. R. De Gruijl, L. W.J. Bosman, Chris I. De Zeeuw, and M. T.G. De Jeu. Inferior olive: all ins and outs. Handbook of the Cerebellum and Cerebellar Disorders, pages 1013–1058, 1 2013. doi:10.1007/978-94-007-1333-8_43.

GuellX+2-2018

Xavier Guell, John D.E. Gabrieli, and Jeremy D. Schmahmann. Embodied cognition and the cerebellum: perspectives from the dysmetria of thought and the universal cerebellar transform theories. Cortex, 100:140–148, 3 2018. doi:10.1016/j.cortex.2017.07.005.

Guell2018

Xavier Guell, John D.E. Gabrieli, and Jeremy D. Schmahmann. Triple representation of language, working memory, social and emotion processing in the cerebellum: convergent evidence from task and seed-based resting-state fmri analyses in a single large cohort. NeuroImage, 172:437–449, 5 2018. doi:10.1016/j.neuroimage.2018.01.082.

Guillaume2018

Alain Guillaume, Jason R Fuller, Riju Srimal, and Clayton E Curtis. Cortico-cerebellar network involved in saccade adaptation. J Neurophysiol, 120:2583–2594, 2018. URL: www.jn.org, doi:10.1152/jn.00392.2018.-Saccade.

Habas2009

Christophe Habas, Nirav Kamdar, Daniel Nguyen, Katherine Prater, Christian F. Beckmann, Vinod Menon, and Michael D. Greicius. Distinct cerebellar contributions to intrinsic connectivity networks. Journal of Neuroscience, 29:8586–8594, 7 2009. doi:10.1523/JNEUROSCI.1868-09.2009.

Habas2018

Christophe Habas and Mario Manto. Probing the neuroanatomy of the cerebellum using tractography. Handbook of Clinical Neurology, 154:235–249, 1 2018. doi:10.1016/B978-0-444-63956-1.00014-X.

Habas2013

Christophe Habas, William R. Shirer, and Michael D. Greicius. Delineation of cerebrocerebellar networks with mri measures of functional and structural connectivity. Handbook of the Cerebellum and Cerebellar Disorders, pages 571–586, 1 2013. doi:10.1007/978-94-007-1333-8_26.

Habas2019

Christophe Habas, William R. Shirer, and Michael D. Greicius. Delineation of cerebrocerebellar networks with mri measures of functional and structural connectivity. Handbook of the Cerebellum and Cerebellar Disorders, pages 1–17, 2019. doi:10.1007/978-3-319-97911-3_26-2.

Hardwick2013

Robert M. Hardwick, Maria Dagioglou, and R. Chris Miall. State estimation and the cerebellum. Handbook of the Cerebellum and Cerebellar Disorders, pages 1297–1314, 1 2013. doi:10.1007/978-94-007-1333-8_57.

Hariri2019

Ahmad R. Hariri. The emerging importance of the cerebellum in broad risk for psychopathology. Neuron, 102:17–20, 4 2019. doi:10.1016/j.neuron.2019.02.031.

Hashimoto2009

K. Hashimoto, T. Yoshida, K. Sakimura, M. Mishina, M. Watanabe, and M. Kano. Influence of parallel fiber-purkinje cell synapse formation on postnatal development of climbing fiber-purkinje cell synapses in the cerebellum. Neuroscience, 162:601–611, 9 2009. doi:10.1016/j.neuroscience.2008.12.037.

Hashimoto2004

Mitsuhiro Hashimoto and Katsuhiko Mikoshiba. Neuronal birthdate-specific gene transfer with adenoviral vectors. Journal of Neuroscience, 24:286–296, 1 2004. doi:10.1523/JNEUROSCI.2529-03.2004.

Heck2013

Detlef H. Heck, Chris I. De Zeeuw, Dieter Jaeger, Kamran Khodakhah, and Abigail L. Person. The neuronal code(s) of the cerebellum. Journal of Neuroscience, 33:17603–17609, 2013. doi:10.1523/JNEUROSCI.2759-13.2013.

Herzfeld2018

David J. Herzfeld, Yoshiko Kojima, Robijanto Soetedjo, and Reza Shadmehr. Encoding of error and learning to correct that error by the purkinje cells of the cerebellum. Nature Neuroscience, 21:736–743, 5 2018. doi:10.1038/s41593-018-0136-y.

Hesslow2020

Germund Hesslow, Dan-Anders Jirenhed, and Fredrik Johansson. Purkinje neurons during eye blink conditioning and new mechanisms of cerebellar learning and timing. Handbook of the Cerebellum and Cerebellar Disorders, pages 1–10, 2020. doi:10.1007/978-3-319-97911-3_115-1.

Huang2013

C. Huang and Robert E. Ricklefs. Cerebellum and human evolution: a comparative and information theory perspective. Handbook of the Cerebellum and Cerebellar Disorders, pages 1337–1358, 1 2013. doi:10.1007/978-94-007-1333-8_59.

Ioffe2013

M. E. Ioffe. Cerebellar control of posture. Handbook of the Cerebellum and Cerebellar Disorders, pages 1221–1240, 1 2013. doi:10.1007/978-94-007-1333-8_53.

Ito2009

M. Ito. Functional roles of neuropeptides in cerebellar circuits. Neuroscience, 162:666–672, 9 2009. doi:10.1016/j.neuroscience.2009.01.019.

Ito2001

Masao Ito. Cerebellar long-term depression: characterization, signal transduction, and functional roles. Pyhsrev, 2001. URL: http://physrev.physiology.org.

Ito2002

Masao Ito. The molecular organization of cerebellar long-term depression. Nature Reviews Neuroscience, 3:896–902, 2002. doi:10.1038/nrn962.

Ito2005

Masao Ito. Bases and implications of learning in the cerebellum - adaptive control and internal model mechanism. Progress in Brain Research, 148:95–109, 2005. doi:10.1016/S0079-6123(04)48009-1.

Ito2006

Masao Ito. Cerebellar circuitry as a neuronal machine. Progress in Neurobiology, 78:272–303, 2 2006. doi:10.1016/j.pneurobio.2006.02.006.

Ito2014

Masao Ito, Kazuhiko Yamaguchi, Soichi Nagao, and Tadashi Yamazaki. Long-term depression as a model of cerebellar plasticity. Progress in Brain Research, 210:1–30, 2014. doi:10.1016/B978-0-444-63356-9.00001-7.

Ito1997

Mcsco Ito. Cerebellar microcomplexes. Int Rev Neurobiol, 1997.

IvryR1997

Richard Ivry. Cerebellar timing systems. Int Rev Neurobiol, 1997.

Jaeger2013

Dieter Jaeger. Cerebellar nuclei and cerebellar learning. Handbook of the Cerebellum and Cerebellar Disorders, pages 1111–1130, 1 2013. doi:10.1007/978-94-007-1333-8_47.

Jaeger2019

Dieter Jaeger. Cerebellar nuclei and cerebellar learning. Handbook of the Cerebellum and Cerebellar Disorders, pages 1–24, 2019. doi:10.1007/978-3-319-97911-3_47-2.

JorntellH2016

Henrik Jörntell. Cerebellar neuronal codes-perspectives from intracellular analysis in vivo. The Neuronal Codes of the Cerebellum, pages 155–172, 2016. doi:10.1016/B978-0-12-801386-1.00007-1.

Kavalali2018

Ege T. Kavalali and Lisa M. Monteggia. The ketamine metabolite 2r,6r-hydroxynorketamine blocks nmda receptors and impacts downstream signaling linked to antidepressant effects. Neuropsychopharmacology, 43:221–222, 1 2018. doi:10.1038/npp.2017.210.

Kawato1987

M Kawato, Kazunori Furukawa ‘, and R Suzuki. Biological cybernetics a hierarchical neural-network model-for control and learning of voluntary movement. Biol. Cybern, 57:169–185, 1987.

KawatoM1999

Mitsuo Kawato. Internal models for motor control and trajectory planning. erato atr, 1999. URL: http://www.erato.atr.co.jp/DB/.

Kawato2020

Mitsuo Kawato, Shogo Ohmae, Huu Hoang, and Terry Sanger. 50 years since the marr, ito, and albus models of the cerebellum. Neuroscience, 2020. doi:10.1016/j.neuroscience.2020.06.019.

Kelly2003

Roberta M Kelly and Peter L Strick. Behavioral/systems/cognitive cerebellar loops with motor cortex and prefrontal cortex of a nonhuman primate. J. of Neuroscience, 2003.

Kilteni2020

Konstantina Kilteni and H. Henrik Ehrsson. Functional connectivity between the cerebellum and somatosensory areas implements the attenuation of self-generated touch. Journal of Neuroscience, 40:894–906, 1 2020. doi:10.1523/JNEUROSCI.1732-19.2019.

Koeppen2018

Arnulf H. Koeppen. The neuropathology of the adult cerebellum. Handbook of Clinical Neurology, 154:129–149, 1 2018. doi:10.1016/B978-0-444-63956-1.00008-4.

Kostadinov2019

Dimitar Kostadinov, Alexandre Mathy, and Beverley A. Clark. Dynamics of the inferior olive oscillator and cerebellar function. Handbook of the Cerebellum and Cerebellar Disorders, pages 1–21, 2019. doi:10.1007/978-3-319-97911-3_44-2.

Krageloh_Mann2010

Ingeborg Krägeloh-mann. Lesions in early cerebellar development - do they matter? Developmental Medicine and Child Neurology, 52:694–694, 8 2010. doi:10.1111/j.1469-8749.2009.03549.x.

Lang2016

Eric J. Lang. Coordination of reaching movements: cerebellar interactions with motor cortex. The Neuronal Codes of the Cerebellum, pages 197–217, 2016. doi:10.1016/B978-0-12-801386-1.00009-5.

Laurens2016

Jean Laurens and Dora E. Angelaki. How the vestibulocerebellum builds an internal model of self-motion. The Neuronal Codes of the Cerebellum, pages 97–115, 2016. doi:10.1016/B978-0-12-801386-1.00004-6.

LeinerHC+LeinerAL1997

Henrietta C Leiner and Alan L Leiner. How fibers subserve computing capabilities: similarities between brains and machines. International Review of Neurobiology, 1997.

Leiner1991

Henrietta C Leiner, Alan L Leiner, and Robert S Dow. The human cerebro-cerebellar system: its computing, cognitive, and language skills. Behavioural Brabt Research, 44:113–128, 1991.

Leiner1986

Henrietta C Leiner, Alan L Leiner, Charming House, Palo Alto, California Robert, and S Dow. Does the cerebellum contribute to mental skills? Behavioral Ncuroscicnce, 100:443–454, 1986.

Leiner2010

Henrietta C. Leiner. Solving the mystery of the human cerebellum. Neuropsychology Review, 20:229–235, 9 2010. doi:10.1007/s11065-010-9140-z.

Leitner2015

Yael Leitner, Katherine E. Travis, Michal Ben-Shachar, Kristen W. Yeom, and Heidi M. Feldman. Tract profiles of the cerebellar white matter pathways in children and adolescents. Cerebellum, 14:613–623, 12 2015. doi:10.1007/s12311-015-0652-1.

LevRamVp3y2003

Varda Lev-Ram, Samar B Mehta, David Kleinfeld, and Roger Y Tsien. Reversing cerebellar long-term depression. PNAS, 2003. URL: www.pnas.orgcgidoi10.1073pnas.2636935100.

LevRamVp3y2002

Varda Lev-Ram, Scott T Wong, Daniel R Storm, and Roger Y Tsien. A new form of cerebellar long-term potentiation is postsynaptic and depends on nitric oxide but not camp. pnas, 2002. URL: www.pnas.orgcgidoi10.1073pnas.122206399.

Lindquist2013

Derick H. Lindquist, Joseph E. Steinmetz, and Richard F. Thompson. Cerebellum and eyeblink conditioning. Handbook of the Cerebellum and Cerebellar Disorders, pages 1175–1190, 1 2013. doi:10.1007/978-94-007-1333-8_50.

Lisberger2009

S. G. Lisberger. Internal models of eye movement in the floccular complex of the monkey cerebellum. Neuroscience, 162:763–776, 9 2009. doi:10.1016/j.neuroscience.2009.03.059.

Liu2013

Siqiong June Liu. Stellate cells: synaptic processing and plasticity. Handbook of the Cerebellum and Cerebellar Disorders, pages 809–828, 1 2013. doi:10.1007/978-94-007-1333-8_33.

Lixenberg2020

Adi Lixenberg, Merav Yarkoni, Yehudit Botschko, and Mati Joshua. Encoding of eye movements explains reward-related activity in cerebellar simple spikes. J Neurophysiol, 123:786–799, 2020. URL: www.jn.org, doi:10.1152/jn.00363.2019.-The.

LlinasRR-2009

R. R. Llinás. Inferior olive oscillation as the temporal basis for motricity and oscillatory reset as the basis for motor error correction. Neuroscience, 162:797–804, 9 2009. doi:10.1016/j.neuroscience.2009.04.045.

Longley2014

Michael Longley and Christopher H. Yeo. Distribution of neural plasticity in cerebellum-dependent motor learning. Progress in Brain Research, 210:79–101, 2014. doi:10.1016/B978-0-444-63356-9.00004-2.

Luo2014

Yuanjun Luo and Izumi Sugihara. Cerebellar afferents originating from the medullary reticular formation that are different from mossy, climbing or monoaminergic fibers in the rat. Brain Research, 1566:31–46, 5 2014. doi:10.1016/j.brainres.2014.04.020.

LenaCandPopaD2016

Clément Léna and Daniela Popa. Cerebrocerebellar loops in the rodent brain. The Neuronal Codes of the Cerebellum, pages 135–153, 2016. doi:10.1016/B978-0-12-801386-1.00006-X.

MacLeod2012

Carol MacLeod. The missing link. evolution of the primate cerebellum. Progress in Brain Research, 195:165–187, 2012. doi:10.1016/B978-0-444-53860-4.00008-8.

Magal2013

Ari Magal. A hypothetical universal model of cerebellar function: reconsideration of the current dogma. Cerebellum, 12:758–772, 10 2013. doi:10.1007/s12311-013-0477-8.

Mannarelli2019

Daniela Mannarelli, Caterina Pauletti, Antonio Currà, Lucio Marinelli, Alessandra Corrado, Roberto Delle Chiaie, and Francesco Fattapposta. The cerebellum modulates attention network functioning: evidence from a cerebellar transcranial direct current stimulation and attention network test study. Cerebellum, 18:457–468, 6 2019. doi:10.1007/s12311-019-01014-8.

Manto2018

Mario Manto. Cerebellar motor syndrome from children to the elderly. Handbook of Clinical Neurology, 154:151–166, 1 2018. doi:10.1016/B978-0-444-63956-1.00009-6.

MarienPaBorgattiR2018

Peter Mariën and Renato Borgatti. Language and the cerebellum. Handbook of Clinical Neurology, 154:181–202, 1 2018. doi:10.1016/B978-0-444-63956-1.00011-4.

Markov2014

N. T. Markov, M. M. Ercsey-Ravasz, A. R. Ribeiro Gomes, C. Lamy, L. Magrou, J. Vezoli, P. Misery, A. Falchier, R. Quilodran, M. A. Gariel, J. Sallet, R. Gamanut, C. Huissoud, S. Clavagnier, P. Giroud, D. Sappey-Marinier, P. Barone, C. Dehay, Z. Toroczkai, K. Knoblauch, D. C. Van Essen, and H. Kennedy. A weighted and directed interareal connectivity matrix for macaque cerebral cortex. Cerebral Cortex, 24:17–36, 1 2014. doi:10.1093/cercor/bhs270.

Mathy2013

Alexandre Mathy and Beverley A. Clark. Dynamics of the inferior olive oscillator and cerebellar function. Handbook of the Cerebellum and Cerebellar Disorders, pages 1059–1078, 1 2013. doi:10.1007/978-94-007-1333-8_44.

McElvain2010

Lauren E. McElvain, Martha W. Bagnall, Alexandra Sakatos, and Sascha Du Lac. Bidirectional plasticity gated by hyperpolarization controls the gain of postsynaptic firing responses at central vestibular nerve synapses. Neuron, 68:763–775, 11 2010. doi:10.1016/j.neuron.2010.09.025.

Medina2000

Javier F Medina and Michael D Mauk. Computer simulation of cerebellar information processing. nature neuroscience, 2000. URL: http://neurosci.nature.com.

Medina2011

Javier F. Medina. The multiple roles of purkinje cells in sensori-motor calibration: to predict, teach and command. Current Opinion in Neurobiology, 21:616–622, 8 2011. doi:10.1016/j.conb.2011.05.025.

MiddletonFAaStrickPL1997

Frank A Middleton and Peter L Strick. Cerebellar output channels. Int Rev Neurobiol, 1997.

Middleton2001

Frank A Middleton and Peter L Strick. Cerebellar projections to the prefrontal cortex of the primate. J of Neuroscience, 2001.

Middleton1998

Frank A. Middleton and Peter L. Strick. Cerebellar output: motor and cognitive channels. Trends in Cognitive Sciences, 1998. doi:10.1016/S1364-6613(98)01220-0.

Miterko2019

Lauren N. Miterko, Roy V. Sillitoe, and Richard Hawkes. Zones and stripes: development of cerebellar topography. Handbook of the Cerebellum and Cerebellar Disorders, pages 1–23, 2019. doi:10.1007/978-3-319-97911-3_3-2.

Moberget2016

Torgeir Moberget and Richard B. Ivry. Cerebellar contributions to motor control and language comprehension: searching for common computational principles. Annals of the New York Academy of Sciences, 1369:154–171, 4 2016. doi:10.1111/nyas.13094.

Molinari2013

Marco Molinari and Maria G. Leggio. Cerebellar sequencing for cognitive processing. Handbook of the Cerebellum and Cerebellar Disorders, pages 1701–1716, 1 2013. doi:10.1007/978-94-007-1333-8_76.

Molinari2018

Marco Molinari, Marcella Masciullo, Sara Bulgheroni, Stefano D’Arrigo, and Daria Riva. Cognitive aspects: sequencing, behavior, and executive functions. Handbook of Clinical Neurology, 154:167–180, 1 2018. doi:10.1016/B978-0-444-63956-1.00010-2.

Molinari2005

Marco Molinari, Domenico Restuccia, and Maria G. Leggio. Cerebellar information flow in the thalamus: implications for cortical functions. Thalamus and Related Systems, 2005. doi:10.1017/S1472928807000143.

MorenoRiusJ-2018

Josep Moreno-Rius. The cerebellum in fear and anxiety-related disorders. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 85:23–32, 7 2018. doi:10.1016/j.pnpbp.2018.04.002.

Mugnaini2011

Enrico Mugnaini, Gabriella Sekerková, and Marco Martina. The unipolar brush cell: a remarkable neuron finally receiving deserved attention. Brain Research Reviews, 66:220–245, 1 2011. doi:10.1016/j.brainresrev.2010.10.001.

Nakanishi2009

S. Nakanishi. Genetic manipulation study of information processing in the cerebellum. Neuroscience, 162:723–731, 9 2009. doi:10.1016/j.neuroscience.2009.01.028.

Narain2018

Devika Narain, Evan D. Remington, Chris I.De Zeeuw, and Mehrdad Jazayeri. A cerebellar mechanism for learning prior distributions of time intervals. Nature Communications, 12 2018. doi:10.1038/s41467-017-02516-x.

Neubauer2018

Simon Neubauer, Jean-Jacques Hublin, and Philipp Gunz. P a l e o n t o l o g y the evolution of modern human brain shape. Science, 2018. URL: http://advances.sciencemag.org/.

Nitschke2005

M. F. Nitschke, T. Arp, G. Stavrou, C. Erdmann, and W. Heide. The cerebellum in the cerebro-cerebellar network for the control of eye and hand movements - an fmri study. Progress in Brain Research, 148:151–164, 2005. doi:10.1016/S0079-6123(04)48013-3.

NemecP+OstenP-2020

Pavel Němec and Pavel Osten. The evolution of brain structure captured in stereotyped cell count and cell type distributions. Current Opinion in Neurobiology, 60:176–183, 2 2020. doi:10.1016/j.conb.2019.12.005.

Overby1989

S E Overby, J G Bjaalie, and P Brodal. Experimental brain research uneven densities of corticopontine neurons in the somatosensory cortex: a quantitative experimental study in the cat. Exp Brain Res, 77:653–665, 1989.

VanOverwalleFp32017

Frank Van Overwalle, Elien Heleven, Ning Ma, and Peter Mariën. Tell me twice: a multi-study analysis of the functional connectivity between the cerebrum and cerebellum after repeated trait information. NeuroImage, 144:241–252, 1 2017. doi:10.1016/j.neuroimage.2016.08.046.

VanOverwalleF+10-2020

Frank Van Overwalle, Mario Manto, Zaira Cattaneo, Silvia Clausi, Chiara Ferrari, John D.E. Gabrieli, Xavier Guell, Elien Heleven, Michela Lupo, Qianying Ma, Marco Michelutti, Giusy Olivito, Min Pu, Laura C. Rice, Jeremy D. Schmahmann, Libera Siciliano, Arseny A. Sokolov, Catherine J. Stoodley, Kim van Dun, Larry Vandervert, and Maria Leggio. Consensus paper: cerebellum and social cognition. Cerebellum, 2020. doi:10.1007/s12311-020-01155-1.

VanOverwalleF+3-2019

Frank Van Overwalle, Mario Manto, Maria Leggio, and José María Delgado-García. The sequencing process generated by the cerebellum crucially contributes to social interactions. Medical Hypotheses, 128:33–42, 7 2019. doi:10.1016/j.mehy.2019.05.014.

Palay1974

Sanford L Palay, Victoria Chan-Palay, and Springer-Verlag Berlin’ Heidelberg. Cerebellar Cortex Cytology and Organization With 267 Figures including 203 Plates. Springer-Verlag, 1974.

PayneHL+5

Hannah L Payne, Ranran L French, Christine C Guo, Barbara Nguyen-Vu, Tiina Manninen, and Jennifer L Raymond. Cerebellar purkinje cells control eye movements with a rapid rate code that is invariant to spike irregularity. elife science, 2019. URL: https://doi.org/10.7554/eLife.37102.001, doi:10.7554/eLife.37102.001.

PersonAL+RamanIM-2012

Abigail L. Person and Indira M. Raman. Synchrony and neural coding in cerebellar circuits. Frontiers in Neural Circuits, 2012. URL: http://journal.frontiersin.org/article/10.3389/fncir.2012.00097/abstract, doi:10.3389/fncir.2012.00097.

Pietrajtis2013

Katarzyna Pietrajtis and Stéphane Dieudonné. Golgi neurons. Handbook of the Cerebellum and Cerebellar Disorders, pages 829–852, 1 2013. doi:10.1007/978-94-007-1333-8_34.

Pleger2018

Burkhard Pleger and Dagmar Timmann. The role of the human cerebellum in linguistic prediction, word generation and verbal working memory: evidence from brain imaging, non-invasive cerebellar stimulation and lesion studies. Neuropsychologia, 115:204–210, 7 2018. doi:10.1016/j.neuropsychologia.2018.03.012.

Popa2019

Laurentiu S. Popa and Timothy J. Ebner. Cerebellum and internal models. Handbook of the Cerebellum and Cerebellar Disorders, pages 1–25, 2019. doi:10.1007/978-3-319-97911-3_56-2.

Popa2014

Laurentiu S. Popa, Angela L. Hewitt, and Timothy J. Ebner. The cerebellum for jocks and nerds alike. Frontiers in Systems Neuroscience, 6 2014. doi:10.3389/fnsys.2014.00113.

Popa2016

Laurentiu S. Popa, Martha L. Streng, and Timothy J. Ebner. Signaling of predictive and feedback information in purkinje cell simple spike activity. The Neuronal Codes of the Cerebellum, pages 1–25, 2016. doi:10.1016/B978-0-12-801386-1.00001-0.

PopaLS+3-2016

Laurentiu S. Popa, Martha L. Streng, Angela L. Hewitt, and Timothy J. Ebner. The errors of our ways: understanding error representations in cerebellar-dependent motor learning. Cerebellum, 15:93–103, 4 2016. doi:10.1007/s12311-015-0685-5.

Poretti2010

Andrea Poretti, Catherine Limperopoulos, Eliane Roulet-Perez, Nicole I. Wolf, Christian Rauscher, Daniela Prayer, Anita MÜller, Markus A. Weissert, Urania Kotzaeridou, Adre J. Du Plessis, Thierry A.G.M. Huisman, and Eugen Boltshauser. Outcome of severe unilateral cerebellar hypoplasia. Developmental Medicine and Child Neurology, 52:718–724, 8 2010. doi:10.1111/j.1469-8749.2009.03522.x.

Prestori2020

Francesca Prestori, Ileana Montagna, Egidio D’angelo, and Lisa Mapelli. The optogenetic revolution in cerebellar investigations. International Journal of Molecular Sciences, 4 2020. doi:10.3390/ijms21072494.

Rahimi2019

Abbas Rahimi, Pentti Kanerva, Luca Benini, and Jan M. Rabaey. Efficient biosignal processing using hyperdimensional computing: network templates for combined learning and classification of exg signals. Proceedings of the IEEE, 107:123–143, 1 2019. doi:10.1109/JPROC.2018.2871163.

Ramnani2014

Narender Ramnani. Automatic and controlled processing in the corticocerebellar system. Progress in Brain Research, 210:255–285, 2014. doi:10.1016/B978-0-444-63356-9.00010-8.

Rasmussen2014

Anders Rasmussen and Germund Hesslow. Feedback control of learning by the cerebello-olivary pathway. Progress in Brain Research, 210:103–119, 2014. doi:10.1016/B978-0-444-63356-9.00005-4.

Raymond2018

Jennifer L Raymond and Javier F Medina. Computational principles of supervised learning in the cerebellum. Annu Rev Neurosci, 2018. URL: https://doi.org/10.1146/annurev-neuro-080317-, doi:10.1146/annurev-neuro-080317.

Reato2016

Davide Reato, Esra Tara, and Kamran Khodakhah. Deep cerebellar nuclei rebound firing in vivo: much ado about almost nothing? The Neuronal Codes of the Cerebellum, pages 27–51, 2016. doi:10.1016/B978-0-12-801386-1.00002-2.

Rokni2009

D. Rokni and Y. Yarom. State-dependence of climbing fiber-driven calcium transients in purkinje cells. Neuroscience, 162:694–701, 9 2009. doi:10.1016/j.neuroscience.2008.12.044.

RondiReigL+4-2014

Laure Rondi-Reig, Anne Lise Paradis, Julie M. Lefort, Benedicte M. Babayan, and Christine Tobin. How the cerebellum may monitor sensory information for spatial representation. Frontiers in Systems Neuroscience, 11 2014. doi:10.3389/fnsys.2014.00205.

Ruigrok2013

Tom J.H. Ruigrok. Cerebellar influences on descending spinal motor systems. Handbook of the Cerebellum and Cerebellar Disorders, pages 497–528, 1 2013. doi:10.1007/978-94-007-1333-8_23.

Sabes2011

Philip N. Sabes. Sensory integration for reaching. models of optimality in the context of behavior and the underlying neural circuits. Progress in Brain Research, 191:195–209, 2011. doi:10.1016/B978-0-444-53752-2.00004-7.

Sacchetti2009

B. Sacchetti, B. Scelfo, and P. Strata. Cerebellum and emotional behavior. Neuroscience, 162:756–762, 9 2009. doi:10.1016/j.neuroscience.2009.01.064.

Sakai2013

Sharleen T. Sakai. Cerebellar thalamic and thalamocortical projections. Handbook of the Cerebellum and Cerebellar Disorders, pages 529–548, 1 2013. doi:10.1007/978-94-007-1333-8_24.

Salmi2010

Juha Salmi, Karen Johanne Pallesen, Tuomas Neuvonen, Elvira Brattico, Antti Korvenoja, Oili Salonen, and Synnöve Carlson. Cognitive and motor loops of the human cerebro-cerebellar system. Journal of Cognitive Neuroscience, 22:2663–2676, 2010. doi:10.1162/jocn.2009.21382.

Sanger2020

Terence D. Sanger, Okito Yamashita, and Mitsuo Kawato. Expansion coding and computation in the cerebellum: 50 years after the marr–albus codon theory. Journal of Physiology, 598:913–928, 3 2020. doi:10.1113/JP278745.

Sarnat2018

Harvey B. Sarnat. Cerebellar networks and neuropathology of cerebellar developmental disorders. Handbook of Clinical Neurology, 154:109–128, 1 2018. doi:10.1016/B978-0-444-63956-1.00007-2.

Sawtell2013

Nathaniel B. Sawtell and Curtis C. Bell. Cerebellum-like structures. Handbook of the Cerebellum and Cerebellar Disorders, pages 1257–1278, 1 2013. doi:10.1007/978-94-007-1333-8_55.

Schmahmann2009

J. D. Schmahmann, J. MacMore, and M. Vangel. Cerebellar stroke without motor deficit: clinical evidence for motor and non-motor domains within the human cerebellum. Neuroscience, 162:852–861, 9 2009. doi:10.1016/j.neuroscience.2009.06.023.

SchmahmannJD+PandyaDN-1991

Jeremy D Schmahmann and and Deepak N Pandya. Projections to the basis pontis from the superior temporal sulcus and superior temporal region in the rhesus monkey. THE JOURNAL OF COMPARATIVE NEUROLOGY, 1991.

SchmahmannJD+PandyaDN-1993

Jeremy D Schmahmann and and Deepak N Pandya. Prelunate, occipitotemporal, and parahippocampal projections to the basis pontis in rhesus monkey. THE JOURNAL OF COMPARATIVE NEUROLOGY, 337:94–112, 1993.

Schmahmann1999

Jeremy D Schmahmann, Julien Doyon, David Mcdonald, Colin Holmes, Karyne Lavoie, Amy S Hurwitz, Noor Kabani, Arthur Toga, Alan Evans, and Michael Petrides. Three-dimensional mri atlas of the human cerebellum in proportional stereotaxic space. Neuroimage, 1999. URL: http://www.idealibrary.com.

Schmahmann2019

Jeremy D Schmahmann, Xavier Guell, Catherine J Stoodley, and Mark A Halko. The theory and neuroscience of cerebellar cognition. Annual Reviews of Neuroscience, 2019. URL: https://doi.org/10.1146/annurev-neuro-070918-, doi:10.1146/annurev-neuro-070918.

Schmahmann1958

Jeremy D Schmahmann and Deepak N Pandya. Anatomic organization of the basilar pontine projections from prefrontal cortices in rhesus monkey. J. of Neuroscience, 1997.

Schmahmann1997

Jeremy D Schmahmann and Deepak N Pandyat. The cerebrocerebellar system. Int Rev Neurobiol, 1997.

Schmahmann2013

Jeremy D. Schmahmann. Cerebellar cognitive affective syndrome and the neuropsychiatry of the cerebellum. Handbook of the Cerebellum and Cerebellar Disorders, pages 1717–1752, 1 2013. doi:10.1007/978-94-007-1333-8_77.

Schutter2013

Dennis J.L.G. Schutter. Human cerebellum in motivation and emotion. Handbook of the Cerebellum and Cerebellar Disorders, pages 1771–1782, 1 2013. doi:10.1007/978-94-007-1333-8_79.

DeSchutterE+SteuberV-2009

E. De Schutter and V. Steuber. Patterns and pauses in purkinje cell simple spike trains: experiments, modeling and theory. Neuroscience, 162:816–826, 9 2009. doi:10.1016/j.neuroscience.2009.02.040.

Scott2012

Stephen H. Scott. The computational and neural basis of voluntary motor control and planning. Trends in Cognitive Sciences, 16:541–549, 11 2012. doi:10.1016/j.tics.2012.09.008.

Serrao2018

Mariano Serrao, Alberto Ranavolo, and Carlo Casali. Neurophysiology of gait. Handbook of Clinical Neurology, 154:299–303, 1 2018. doi:10.1016/B978-0-444-63956-1.00018-7.

Shadmehr2010

Reza Shadmehr, Maurice A. Smith, and John W. Krakauer. Error correction, sensory prediction, and adaptation in motor control. Annual Review of Neuroscience, 33:89–108, 2010. doi:10.1146/annurev-neuro-060909-153135.

Shinoda2013

Yoshikazu Shinoda and Izumi Sugihara. Axonal trajectories of single climbing and mossy fiber neurons in the cerebellar cortex and nucleus. Handbook of the Cerebellum and Cerebellar Disorders, pages 437–468, 1 2013. doi:10.1007/978-94-007-1333-8_20.

Sillitoe2008

Roy V. Sillitoe, Seung Hyuk Chung, Jean Marc Fritschy, Monica Hoy, and Richard Hawkes. Golgi cell dendrites are restricted by purkinje cell stripe boundaries in the adult mouse cerebellar cortex. Journal of Neuroscience, 28:2820–2826, 3 2008. doi:10.1523/JNEUROSCI.4145-07.2008.

Sillitoe2013

Roy V. Sillitoe and Richard Hawkes. Zones and stripes: development of cerebellar topography. Handbook of the Cerebellum and Cerebellar Disorders, pages 43–60, 1 2013. doi:10.1007/978-94-007-1333-8_3.

Sillitoe2005

Roy V. Sillitoe, Hassan Marzban, Matt Larouche, Sepehr Zahedi, Jorge Affanni, and Richard Hawkes. Conservation of the architecture of the anterior lobe vermis of the cerebellum across mammalian species. Progress in Brain Research, 148:283–297, 2005. doi:10.1016/S0079-6123(04)48022-4.

Simpson2005

J. I. Simpson, H. C. Hulscher, E. Sabel-Goedknegt, and T. J.H. Ruigrok. Between in and out: linking morphology and physiology of cerebellar cortical interneurons. Progress in Brain Research, 148:329–340, 2005. doi:10.1016/S0079-6123(04)48026-1.

Sims2005

Robert E. Sims and Nicholas A. Hartell. Differences in transmission properties and susceptibility to long-term depression reveal functional specialization of ascending axon and parallel fiber synapses to purkinje cells. Journal of Neuroscience, 25:3246–3257, 3 2005. doi:10.1523/JNEUROSCI.0073-05.2005.

Smaers2014

Jeroen B. Smaers. Modeling the evolution of the cerebellum. from macroevolution to function. Progress in Brain Research, 210:193–216, 2014. doi:10.1016/B978-0-444-63356-9.00008-X.

Sokolov2017

Arseny A. Sokolov, R. Chris Miall, and Richard B. Ivry. The cerebellum: adaptive prediction for movement and cognition. Trends in Cognitive Sciences, 21:313–332, 5 2017. doi:10.1016/j.tics.2017.02.005.

Sotelo2009

C. Sotelo and I. Dusart. Intrinsic versus extrinsic determinants during the development of purkinje cell dendrites. Neuroscience, 162:589–600, 9 2009. doi:10.1016/j.neuroscience.2008.12.035.

Sotelo2011

Constantino Sotelo. Camillo golgi and santiago ramon y cajal: the anatomical organization of the cortex of the cerebellum. can the neuron doctrine still support our actual knowledge on the cerebellar structural arrangement? Brain Research Reviews, 66:16–34, 1 2011. doi:10.1016/j.brainresrev.2010.05.004.

Spencer2013

Rebecca M.C. Spencer and Richard B. Ivry. Cerebellum and timing. Handbook of the Cerebellum and Cerebellar Disorders, pages 1201–1220, 1 2013. doi:10.1007/978-94-007-1333-8_52.

Steinlin2013

Maja Steinlin and Kevin Wingeier. Cerebellum and cognition. Handbook of the Cerebellum and Cerebellar Disorders, pages 1687–1700, 1 2013. doi:10.1007/978-94-007-1333-8_75.

Steuber2016

Volker Steuber. Modeling the generation of cerebellar nuclear spike output. The Neuronal Codes of the Cerebellum, pages 117–133, 2016. doi:10.1016/B978-0-12-801386-1.00005-8.

Stoodley2013

Catherine J. Stoodley, John E. Desmond, and Jeremy D. Schmahmann. Functional topography of the human cerebellum revealed by functional neuroimaging studies. Handbook of the Cerebellum and Cerebellar Disorders, pages 735–764, 1 2013. doi:10.1007/978-94-007-1333-8_30.

Stoodley2016

Catherine J. Stoodley and Catherine Limperopoulos. Structure–function relationships in the developing cerebellum: evidence from early-life cerebellar injury and neurodevelopmental disorders. Seminars in Fetal and Neonatal Medicine, 21:356–364, 10 2016. doi:10.1016/j.siny.2016.04.010.

Stoodley2018

Catherine J. Stoodley and Jeremy D. Schmahmann. Functional topography of the human cerebellum. Handbook of Clinical Neurology, 154:59–70, 1 2018. doi:10.1016/B978-0-444-63956-1.00004-7.

Stoodley2012

Catherine J. Stoodley, Eve M. Valera, and Jeremy D. Schmahmann. Functional topography of the cerebellum for motor and cognitive tasks: an fmri study. NeuroImage, 59:1560–1570, 1 2012. doi:10.1016/j.neuroimage.2011.08.065.

Strata2009

P. Strata, W. T. Thach, and O. P. Ottersen. New insights in cerebellar function. Neuroscience, 162:545–548, 9 2009. doi:10.1016/j.neuroscience.2009.06.047.

Strick2009

Peter L. Strick, Richard P. Dum, and Julie A. Fiez. Cerebellum and nonmotor function. Annual Review of Neuroscience, 32:413–434, 6 2009. doi:10.1146/annurev.neuro.31.060407.125606.

Sultan2003

Fahad Sultan and Detlef Heck. Detection of sequences in the cerebellar cortex: numerical estimate of the possible number of tidal-wave inducing sequences represented. Journal of Physiology Paris, 97:591–600, 7 2003. doi:10.1016/j.jphysparis.2004.01.016.

Sun2016

Zong Peng Sun, Shabtai Barash, and Peter Thier. The role of the cerebellum in optimizing saccades. The Neuronal Codes of the Cerebellum, pages 173–196, 2016. doi:10.1016/B978-0-12-801386-1.00008-3.

Suvrathan2016

Aparna Suvrathan, Hannah L. Payne, and Jennifer L. Raymond. Timing rules for synaptic plasticity matched to behavioral function. Neuron, 92:959–967, 12 2016. doi:10.1016/j.neuron.2016.10.022.

Szapiro2009

G. Szapiro and B. Barbour. Parasynaptic signalling by fast neurotransmitters: the cerebellar cortex. Neuroscience, 162:644–655, 9 2009. doi:10.1016/j.neuroscience.2009.03.077.

Takamuku2015

Shinya Takamuku and Hiroaki Gomi. What you feel is what you see: inverse dynamics estimation underlies the resistive sensation of a delayed cursor. Proceedings of the Royal Society B: Biological Sciences, 7 2015. doi:10.1098/rspb.2015.0864.

Tanaka2020

Hirokazu Tanaka, Takahiro Ishikawa, Jongho Lee, and Shinji Kakei. The cerebro-cerebellum as a locus of forward model: a review. Frontiers in Systems Neuroscience, 4 2020. doi:10.3389/fnsys.2020.00019.

Taylor2014

Jordan A. Taylor and Richard B. Ivry. Cerebellar and prefrontal cortex contributions to adaptation, strategies, and reinforcement learning. Progress in Brain Research, 210:217–253, 2014. doi:10.1016/B978-0-444-63356-9.00009-1.

Thier1988

P Thier, W Koehler, and U W Buettner. Experimental brain research neuronal activity in the dorsolateral pontine nucleus of the alert monkey modulated by visual stimuli and eye movements. Exp Brain Res, 70:496–512, 1988.

Thompson2009

R. F. Thompson and J. E. Steinmetz. The role of the cerebellum in classical conditioning of discrete behavioral responses. Neuroscience, 162:732–755, 9 2009. doi:10.1016/j.neuroscience.2009.01.041.

Timmann2009

D. Timmann, J. Konczak, W. Ilg, O. Donchin, J. Hermsdörfer, E. R. Gizewski, and B. Schoch. Current advances in lesion-symptom mapping of the human cerebellum. Neuroscience, 162:836–851, 9 2009. doi:10.1016/j.neuroscience.2009.01.040.

Timmann2013

Dagmar Timmann, Michael Küuper, Elke R. Gizewski, Beate Schoch, and Opher Donchin. Lesion-symptom mapping of the human cerebellum. Handbook of the Cerebellum and Cerebellar Disorders, pages 1627–1656, 1 2013. doi:10.1007/978-94-007-1333-8_72.

Tomasch1969

Joseph Tomasch. The numerical capacity of the human cortico-ponto-cerebellar system*. Brain Research, 13:476–484, 1969.

Tseng2007

Ya Weng Tseng, Jörn Diedrichsen, John W. Krakauer, Reza Shadmehr, and Amy J. Bastian. Sensory prediction errors drive cerebellum-dependent adaptation of reaching. Journal of Neurophysiology, 98:54–62, 7 2007. doi:10.1152/jn.00266.2007.

Ugolini1986

G Ugolini and H G J M Kuypers. Collaterals of corticospinal and pyramidal fibres to the pontine grey demonstrated by a new application of the fluorescent fibre labelling technique. Brain Research, 365:211–227, 1986.

Uusisaari2013

Marylka Yoe Uusisaari and Thomas Knöpfel. Neurons of the deep cerebellar nuclei. Handbook of the Cerebellum and Cerebellar Disorders, pages 1101–1110, 1 2013. doi:10.1007/978-94-007-1333-8_46.

vandenBergN+4-2020

Nils S. van den Berg, Rients B. Huitema, Jacoba M. Spikman, Gert Jan Luijckx, and Edward H.F. de Haan. Impairments in emotion recognition and risk-taking behavior after isolated, cerebellar stroke. Cerebellum, 19:419–425, 6 2020. doi:10.1007/s12311-020-01121-x.

Vella2018

Alessandra Vella and Mario Mascalchi. Nuclear medicine of the cerebellum. Handbook of Clinical Neurology, 154:251–266, 1 2018. doi:10.1016/B978-0-444-63956-1.00015-1.

Viscomi2020

M. T. Viscomi, M. G. Leggio, and M. Molinari. Hemicerebellectomy. Handbook of the Cerebellum and Cerebellar Disorders, pages 1–18, 2020. doi:10.1007/978-3-319-97911-3_70-2.

Voogd2011

Jan Voogd. Cerebellar zones: a personal history. Cerebellum, 10:334–350, 9 2011. doi:10.1007/s12311-010-0221-6.

Voogd2018

Jan Voogd and Peter J. Koehler. Historic notes on anatomic, physiologic, and clinical research on the cerebellum. Handbook of Clinical Neurology, 154:3–26, 1 2018. doi:10.1016/B978-0-444-63956-1.00001-1.

Voogd2013

Jan Voogd, Yoshikazu Shinoda, Tom J.H. Ruigrok, and Izumi Sugihara. Cerebellar nuclei and the inferior olivary nuclei: organization and connections. Handbook of the Cerebellum and Cerebellar Disorders, pages 377–436, 1 2013. doi:10.1007/978-94-007-1333-8_19.

Wagner2017

Mark J. Wagner, Tony Hyun Kim, Joan Savall, Mark J. Schnitzer, and Liqun Luo. Cerebellar granule cells encode the expectation of reward. Nature, 544:96–100, 4 2017. doi:10.1038/nature21726.

Wagner2020

Mark J. Wagner and Liqun Luo. Neocortex–cerebellum circuits for cognitive processing. Trends in Neurosciences, 43:42–54, 1 2020. doi:10.1016/j.tins.2019.11.002.

Wall2013

Mark J. Wall and Boris P. Klyuch. Purinergic signaling in the cerebellum. Handbook of the Cerebellum and Cerebellar Disorders, pages 947–970, 1 2013. doi:10.1007/978-94-007-1333-8_40.

Wallisch2008

Pascal Wallisch and J. Anthony Movshon. Structure and function come unglued in the visual cortex. Neuron, 60:195–197, 10 2008. doi:10.1016/j.neuron.2008.10.008.

Watson2019

Thomas C. Watson and Richard Apps. Cerebro-cerebellar connections. Handbook of the Cerebellum and Cerebellar Disorders, pages 1–26, 2019. doi:10.1007/978-3-319-97911-3_48-3.

WolpertDM+KawatoM-1998

D M Wolpert and M Kawato. 998 special issue multiple paired forward and inverse models for motor control. Neural Networks, 1998.

Xiao2018

Le Xiao, Caroline Bornmann, Laetitia Hatstatt-Burklé, and Peter Scheiffele. Regulation of striatal cells and goal-directed behavior by cerebellar outputs. Nature Communications, 12 2018. doi:10.1038/s41467-018-05565-y.

Zang2019

Yunliang Zang and Erik De Schutter. Climbing fibers provide graded error signals in cerebellar learning. Frontiers in Systems Neuroscience, 9 2019. doi:10.3389/fnsys.2019.00046.

DeZeeuwCip5y2011

Chris I. De Zeeuw, Freek E. Hoebeek, Laurens W.J. Bosman, Martijn Schonewille, Laurens Witter, and Sebastiaan K. Koekkoek. Spatiotemporal firing patterns in the cerebellum. Nature Reviews Neuroscience, 12:327–344, 6 2011. doi:10.1038/nrn3011.

Zehl2016

Lyuba Zehl, Florent Jaillet, Adrian Stoewer, Jan Grewe, Andrey Sobolev, Thomas Wachtler, Thomas G. Brochier, Alexa Riehle, Michael Denker, and Sonja Grün. Handling metadata in a neurophysiology laboratory. Frontiers in Neuroinformatics, 2016. doi:10.3389/fninf.2016.00026.