References

AlbusJS-1971

JS Albus. A theory of cerebellar function. Mathematical Biosciences, 10(1-2):25–61, 1971. URL: https://robotictechnologyinc.com/images/upload/file/Albus%20Theory%20Of%20Cerebellar%20Function.pdf, PDF: AlbusJS-1971.pdf.

AlbusJS-1981

JS Albus. Brains, Behavior and Robotics. McGraw-Hill, New York, NY, 1981.

AnkriL+5-2015

Lea Ankri, Zoé Husson, Katarzyna Pietrajtis, Rémi Proville, Clément Léna, Yosef Yarom, Stéphane Dieudonné, and Marylka Yoe Uusisaari. A novel inhibitory nucleo-cortical circuit controls cerebellar Golgi cell activity. eLife, 4:e06262, May 2015. URL: https://elifesciences.org/articles/06262, doi:10.7554/eLife.06262, Notes: AnkriL+5-2015.html.

AppsR+HawkesR-2009

Richard Apps and Richard Hawkes. Cerebellar cortical organization: a one-map hypothesis. Nature Reviews Neuroscience, 10:670–681, 9 2009. doi:10.1038/nrn2698, Notes: AppsR+HawkesR-2009.html.

ArltC+HausserM-2020

Charlotte Arlt and Michael Häusser. Microcircuit Rules Governing Impact of Single Interneurons on Purkinje Cell Output In Vivo. Cell Reports, 30(9):3020–3035.e3, March 2020. URL: https://linkinghub.elsevier.com/retrieve/pii/S2211124720301637, doi:10.1016/j.celrep.2020.02.009.

AndersonBB+2-1992

Andersen BB, Korbo L, and Pakkenberg B. A quantitative study of the human cerebellum with unbiased stereological techniques. J Comp Neurol, 326(4):549–60, 1992. doi:10.1002/cne.903260405, Notes: AndersonBB+2-1992.html.

BillingsG+4-2014

Guy Billings, Eugenio Piasini, Andrea Lőrincz, Zoltan Nusser, and R. Angus Silver. Network Structure within the Cerebellar Input Layer Enables Lossless Sparse Encoding. Neuron, 83(4):960–974, August 2014. URL: https://linkinghub.elsevier.com/retrieve/pii/S089662731400631X, doi:10.1016/j.neuron.2014.07.020, Notes: BillingsG+4-2014.html.

CesanaE+6-2013

E. Cesana, K. Pietrajtis, C. Bidoret, P. Isope, E. D’Angelo, S. Dieudonne, and L. Forti. Granule Cell Ascending Axon Excitatory Synapses onto Golgi Cells Implement a Potent Feedback Circuit in the Cerebellar Granular Layer. Journal of Neuroscience, 33(30):12430–12446, July 2013. URL: https://www.jneurosci.org/lookup/doi/10.1523/JNEUROSCI.4897-11.2013, doi:10.1523/JNEUROSCI.4897-11.2013, Notes: CesanaE+6-2013.html.

DAngeloE+CasaliS-2013

E D’Angelo and S Casali. Seeking a unified framework for cerebellar function and dysfunction: from circuit operations to cognition. Frontiers in Neural Circuits, 2013. URL: https://www.frontiersin.org/articles/10.3389/fncir.2012.00116/full#B220, PDF: DAngeloE+CasaliS-2013.pdf.

DAngeloE+5-2013

Egidio D’Angelo, Sergio Solinas, Jonathan Mapelli, Daniela Gandolfi, Lisa Mapelli, and Francesca Prestori. The cerebellar Golgi cell and spatiotemporal organization of granular layer activity. Frontiers in Neural Circuits, 2013. URL: http://journal.frontiersin.org/article/10.3389/fncir.2013.00093/abstract, doi:10.3389/fncir.2013.00093, Notes: DAngeloE+5-2013.html.

DeZeeuwCI+2-2021

Chris I. De Zeeuw, Stephen G. Lisberger, and Jennifer L. Raymond. Diversity and dynamism in the cerebellum. Nature Neuroscience, 24(2):160–167, February 2021. URL: http://www.nature.com/articles/s41593-020-00754-9, doi:10.1038/s41593-020-00754-9, Notes: DeZeeuwCI+2-2021.html.

DiedrichsenJ+4-2019

Jörn Diedrichsen, Maedbh King, Carlos Hernandez-Castillo, Marty Sereno, and Richard B. Ivry. Universal transform or multiple functionality? understanding the contribution of the human cerebellum across task domains. Neuron, 102(5):918–928, June 2019. URL: https://linkinghub.elsevier.com/retrieve/pii/S0896627319303782, doi:10.1016/j.neuron.2019.04.021.

DugueGP-2009+8

Guillaume P. Dugué, Nicolas Brunel, Vincent Hakim, Eric Schwartz, Mireille Chat, Maxime Lévesque, Richard Courtemanche, Clément Léna, and Stéphane Dieudonné. Electrical Coupling Mediates Tunable Low-Frequency Oscillations and Resonance in the Cerebellar Golgi Cell Network. Neuron, 61(1):126–139, January 2009. URL: https://linkinghub.elsevier.com/retrieve/pii/S0896627308010210, doi:10.1016/j.neuron.2008.11.028.

DAngeloE+11-2016

Egidio D’Angelo, Alberto Antonietti, Stefano Casali, Claudia Casellato, Jesus A. Garrido, Niceto Rafael Luque, Lisa Mapelli, Stefano Masoli, Alessandra Pedrocchi, Francesca Prestori, Martina Francesca Rizza, and Eduardo Ros. Modeling the Cerebellar Microcircuit: New Strategies for a Long-Standing Issue. Frontiers in Cellular Neuroscience, July 2016. URL: http://journal.frontiersin.org/Article/10.3389/fncel.2016.00176/abstract, doi:10.3389/fncel.2016.00176, PDF: DAngeloE+11-2016.pdf.

EcclesJC+2-1967

John C. Eccles, Masao Ito, and János Szentágothai. The Cerebellum as a Neuronal Machine. Springer Berlin Heidelberg, 1967. doi:10.1007/978-3-662-13147-3, Notes: EcclesJC+2-1967.html.

FellemanDJ+VanEssenDC-1991

DJ Felleman and DC Van Essen. Distributed hierarchical processing in the primate cerebral cortex. Cerebral Cortex, 1(1):1–47, Jan/Feb 1991. URL: https://www.cns.nyu.edu/~tony/vns/readings/felleman-vanessen-1991.pdf, PDF: FellemanDJ+VanEssenDC-1991.pdf.

GaylerRW-2003

RW Gayler. Vector symbolic architectures answer jackendoff’s challenges for cognitive neuroscience. In Peter Slezak, editor, Proceedings of the ICCS/ASCS Joint International Conference on Cognitive Science (ICCS/ASCS 2003), 133–138. Sydney, NSW, AU, July 2003. University of New South Wales. URL: http://arxiv.org/abs/cs/0412059, arXiv:0412059v1, PDF: GaylerRW-2003.pdf.

GlicksteinM-2007

Mitch Glickstein. What does the cerebellum really do? Current Biology, 17(19):4, 2007. doi:10.1016/j.cub.2007.08.009, Notes: GlicksteinM-2007.html.

GuoC+5-2016

Chong Guo, Laurens Witter, Stephanie Rudolph, Hunter L. Elliott, Katelin A. Ennis, and Wade G. Regehr. Purkinje Cells Directly Inhibit Granule Cells in Specialized Regions of the Cerebellar Cortex. Neuron, 91(6):1330–1341, September 2016. URL: https://linkinghub.elsevier.com/retrieve/pii/S0896627316305037, doi:10.1016/j.neuron.2016.08.011, Notes: GuoC+5-2016.html.

HullC+RegehrWG-2012

Court Hull and Wade G. Regehr. Identification of an Inhibitory Circuit that Regulates Cerebellar Golgi Cell Activity. Neuron, 73(1):149–158, January 2012. URL: https://linkinghub.elsevier.com/retrieve/pii/S0896627311009949, doi:10.1016/j.neuron.2011.10.030, Notes: HullC+RegehrWG-2012.html.

ItoM-1984

M Ito. The Cerebellum and Neural Control. Raven Press, New York, NY, 1984.

JaeckelLA-1989b

LA Jaeckel. A class of designs for a sparse distributed memory. Technical Report 89.29, NASA Ames Research Center, 1989. URL: https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19920002426.pdf, PDF: JaeckelLA-1989b.pdf.

JaeckelLA-1989a

LA Jaeckel. An alternative design for a sparse distributed memory. Technical Report 89.28, NASA Ames Research Center, 1989. PDF: JaeckelLA-1989a.pdf.

JakabRL+HamoriJ-1988

R. L. Jakab and J. Hamori. Quantitative morphology and synaptology of cerebellar glomeruli in the rat. Anatomy and Embryology, 179(1):81–88, October 1988. URL: http://link.springer.com/10.1007/BF00305102, doi:10.1007/BF00305102.

KandelER+2-2000

ER Kandel, JH Schwartz, and TM Jessell. The cerebellum. In ER Kandel, JH Schwartz, and TM Jessell, editors, Principles of Neural Science, chapter 42, pages 201–213. McGrae-Hill, New York, fourth edition, 2000. URL: https://www.cs.cmu.edu/afs/cs/academic/class/15883-f17/readings/ghez-2000.pdf.

KandelER+4-2013

ER Kandel, JH Schwartz, TM Jessell, SA Siegelbaum, and Hudspeth AJ. The cerebellum. In ER Kandel, JH Schwartz, and TM Jessell, editors, Principles of Neural Science, chapter 42, pages 960–981. McGrae-Hill, New York, fifth edition, 2013.

KanervaP-1988

P Kanerva. Sparse Distributed Memory. MIT Press, Cambridge, MA, 1988.

KanervaP-1989

P Kanerva. A cerebellar-model associative memory as a generalized random-access memory. In Proc. 34th IEEE Computer Society Int’l Conference (COMPCON Spring ‘89, San Francisco), 570–576. 1989. URL: https://pdfs.semanticscholar.org/65f7/e9bc99f27cd24226e74ba3bc673d69175e5e.pdf?_ga=2.145552822.361059761.1574023399-1910310255.1574023399, PDF: KanervaP-1989.pdf.

KanervaP-1993

P Kanerva. Sparse distributed memory and related models. In M.H. Hassoun, editor, Associative Neural Memories: Theory and Implementation, chapter 3, pages 50–76. Oxford University Press, New York, 1993. PDF: KanervaP-1993.pdf.

KanervaP-2009

P Kanerva. Hyperdimensional computing: an introduction to computing in distributed representation with high-dimensional random vectors. Cognitive Computation, 1(2):139–159, 2009. URL: https://redwood.berkeley.edu/wp-content/uploads/2018/01/kanerva2009hyperdimensional.pdf.

KarlssonR-2001

R Karlsson. A fast activation mechanism for the kanerva sdm memory. In Kanerva P Uesaka Y and Asoh H, editors, Foundations of Real-World Intelligence, pages 289–293. CSLI Publications, Stanford, CA, 2001. URL: http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.44.5112&rep=rep1&type=pdf.

KawatoM+3-2021

Mitsuo Kawato, Shogo Ohmae, Huu Hoang, and Terry Sanger. 50 Years Since the Marr, Ito, and Albus Models of the Cerebellum. Neuroscience, 462:151–174, May 2021. URL: https://linkinghub.elsevier.com/retrieve/pii/S0306452220303961, doi:10.1016/j.neuroscience.2020.06.019.

KenyonGT-1997

GT Kenyon. A model of long-term memory storage in the cerebellar cortex: a possible role for plasticity at parallel fiber synapses onto stellate/basket interneurons. Proc. Natl. Acad. Sci. USA (Psychology), 94:14200–14205, December 1997. URL: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC28457/pdf/pq014200.pdf, PDF: KenyonGT-1997.pdf.

KingM+4-2019b

M King, CR Hernandez-Castillo, RA Poldrack, RB Ivry, and J Diedrichsen. Cerebellar atlas viewer. Website with interactive graphics, 2019. URL: http://www.diedrichsenlab.org/imaging/AtlasViewer/.

KingM+4-2019a

M King, CR Hernandez-Castillo, RA Poldrack, RB Ivry, and J Diedrichsen. Functional boundaries in the human cerebellum revealed by a multi-domain task battery. Nature Neuroscience, 22:1371–1378, July 2019. URL: http://www.diedrichsenlab.org/pubs/King_NatureNeuro_2019.pdf.

KorboL+3-1993

Korbo L, Andersen BB, Ladefoged O, and Møller A. Total numbers of various cell types in rat cerebellar cortex estimated using an unbiased stereological method. Brain Res, 609(1-2):262–268, April 1993. doi:10.1016/0006-8993(93)90881-m, Notes: KorboL+3-1993.html.

LangeW-1975

W. Lange. Cell number and cell density in the cerebellar cortex of man and some other mammals. Cell and Tissue Research, March 1975. URL: http://link.springer.com/10.1007/BF00223234, doi:10.1007/BF00223234, Notes: LangeW-1975.html.

LiK+MalikJ-2017

K Li and J Malik. Fast k-nearest neighbour search via dynamic continuous indexing. 2017. URL: https://arxiv.org/abs/1512.00442, PDF: LiK+MalikJ-2017.pdf.

Litwin-KumarA+4-2017

A Litwin-Kumar, KD Harris, R Axel, H Sompolinsky, and LF Abbott. Optimal degrees of synaptic connectivity. Neuron, 93(5):1153–1164, March 2017. URL: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5379477/pdf/nihms849288.pdf, doi:10.1016/j.neuron.2017.01.030, PDF: Litwin-KumarA+4-2017.pdf.

LlinasRR-1975

RR Llinas. The cortex of the cerebellum. Scientific American, 232(1):56–71, 1975. URL: https://www.scientificamerican.com/article/the-cortex-of-the-cerebellum/, PDF: LlinasRR-1975.pdf.

LoebnerEE-1989

EE Loebner. Intelligent network management and functional cerebellum synthesis. In Raugh MR, editor, Cerebellar Models of Associative Memory: Three papers from IEEE COMPCON SPRING ‘89, pages 14–19. Research Institute for Advanced Computer Science, NASA Ames Research Center, 1989. PDF: LoebnerEE-1989.pdf, Notes: LoebnerEE-1989.html.

MarrD-1969

D Marr. A theory of cerebellar cortex. Journal of Physiology, 1969. URL: https://pdfs.semanticscholar.org/3c6f/34131ad83fda26a3d8ca9892a6705fd40d11.pdf, PDF: MarrD-1969.pdf.

PalkovitsM+2-1971b

M Palkovits. Quantitative histological analysis of the cerebellar cortex in the cat. II. Cell numbers and densities in the granular layer. Brain Research, pages 16, 1971. Notes: PalkovitsM+2-1971b.html.

PalkovitsM+2-1971a

M Palkovits, P. Magyar, and J. Szentagothai. Quantitative histological analysis of the cerebellar cortex in the cat. i. number and arrangement in the space of the purkinje cells. Brain Research, pages 13, 1971. Notes: PalkovitsM+2-1971a.html.

PalkovitsM+2-1971c

M. Palkovits, P. Magyar, and J. Szentágothai. Quantitative histological analysis of the cerebellar cortex in the cat. III. Structural organization of the molecular layer. Brain Research, 34(1):1–18, November 1971. URL: https://linkinghub.elsevier.com/retrieve/pii/0006899371903477, doi:10.1016/0006-8993(71)90347-7, Notes: PalkovitsM+2-1971c.html.

PalkovitsM+3-1977

M. Palkovits, Eva Mezey, J. Hamori, and J. Szentagothai. Quantitative histological analysis of the cerebellar nuclei in the cat. I. Numerical data on cells and on synapses. Experimental Brain Research, May 1977. URL: http://link.springer.com/10.1007/BF00237096, doi:10.1007/BF00237096, Notes: PalkovitsM+3-1977.html.

PalkovitsM+2-1972

Miklos Palkovits, Pal Magyar, and Janos Szentagothai. Quantitative histological analysis of the cerebellar cortex in the cat. IV. Mossy fiber-purkinje cell numerical transfer. Brain Research, 45(1):15–29, October 1972. URL: https://linkinghub.elsevier.com/retrieve/pii/0006899372902132, doi:10.1016/0006-8993(72)90213-2, Notes: PalkovitsM+2-1972.html.

PlateT-1991

T Plate. Holographic reduced representations: convolution algebra for compositional distributed representations. In John Mylopoulos and Ray Reiter, editors, Proceedings of the 12th International Joint Conference on Artificial Intelligence (IJCAI), pages 30–35. Morgan Kaufmann, San Mateo, CA, 1991. URL: http://d-reps.org/papers/plate.ijcai91.pdf, PDF: PlateT-1991.pdf.

PlateTA-2003

TA Plate. Holographic Reduced Representation: Distributed Representation of cognitive structure. CSLI Publications, Stanford, CA, 2003.

RahimiA+3-2019

A Rahimi, P Kanerva, L Benini, and JM Rabaey. Efficient biosignal processing using hyperdimensional computing: network templates for combined learning and classification of exg signals. Proceedings of the IEEE, 107(1):123–143, 2019. URL: https://doi.org/10.1109/JPROC.2018.2871163, Notes: RahimiA+3-2019.html.

RaughMR-ed-1989

ed. Raugh MR. Cerebellar models of associative memory: three papers from ieee compcon spring ‘89. Technical Report, NASA Ames Research Center, 1989. URL: https://pdfs.semanticscholar.org/65f7/e9bc99f27cd24226e74ba3bc673d69175e5e.pdf?_ga=2.145552822.361059761.1574023399-1910310255.1574023399, PDF: RaughMR-ed-1989.pdf.

RieublandS+2-2014

Sarah Rieubland, Arnd Roth, and Michael Häusser. Structured Connectivity in Cerebellar Inhibitory Networks. Neuron, 81(4):913–929, February 2014. URL: https://linkinghub.elsevier.com/retrieve/pii/S0896627313011902, doi:10.1016/j.neuron.2013.12.029, Notes: RieublandS+2-2014.html.

SolariSVH+StonerR-2011a

SVH Solari and R Stoner. Cognitive consilience: primate non-primary neuroanatomical circuits underlying cognition. Frontiers in Neuroanatomy, December 2011. URL: https://www.frontiersin.org/articles/10.3389/fnana.2011.00065/full.

SolariSVH+StonerR-2011b

SVH Solari and R Stoner. Cognitive consilience: visualization. Website with interactive graphics, 2011. URL: http://www.frontiersin.org/files/cognitiveconsilience/index.html.

SolinasS+2-2010

Sergio Solinas, Thierry Nieus, and Egidio D‘Angelo. A realistic large-scale model of the cerebellum granular layer predicts circuit spatio-temporal filtering properties. Frontiers in Cellular Neuroscience, 4:12, 2010. URL: https://www.frontiersin.org/article/10.3389/fncel.2010.00012, doi:10.3389/fncel.2010.00012.

StewartTC+2-2011

TC Stewart, Y Tang, and Eliasmith C. A biologically realistic cleanup memory: autoassociation in spiking neurons. Cognitive Systems Research, 12:84–92, 2011. URL: http://compneuro.uwaterloo.ca/files/publications/stewart.2011.pdf, PDF: StewartTC+2-2011.pdf.

StrickPL+2-2009

Peter L. Strick, Richard P. Dum, and Julie A. Fiez. Cerebellum and nonmotor function. Annual Review of Neuroscience, 32:413–434, 6 2009. doi:10.1146/annurev.neuro.31.060407.125606.

SudhakarSK+8-2017

Shyam Kumar Sudhakar, Sungho Hong, Ivan Raikov, Rodrigo Publio, Claus Lang, Thomas Close, Daqing Guo, Mario Negrello, and Erik De Schutter. Spatiotemporal network coding of physiological mossy fiber inputs by the cerebellar granular layer. PLOS Computational Biology, 13(9):1–35, September 2017. URL: https://dx.plos.org/10.1371/journal.pcbi.1005754, doi:10.1371/journal.pcbi.1005754, Notes: SudhakarSK+8-2017.html.

TomaschJ-1968

J. Tomasch. The overall information carrying capacity of the major afferent and efferent cerebellar cell and fiber systems. Stereotactic and Functional Neurosurgery, 30(5-6):359–367, 1968. URL: https://www.karger.com/Article/FullText/103549, doi:10.1159/000103549, Notes: TomaschJ-1968.html.

TyrrellT+WillshawD-1992

T Tyrrell and Willshaw D. Cerebellar cortex: its simulation and the relevance of marr’s theory. Philosophical Transactions of Royal Society of London, B: Biological Sciences, 336(1277):239–257, May 1992. URL: https://royalsocietypublishing.org/doi/pdf/10.1098/rstb.1992.0059, PDF: TyrrellT+WillshawD-1992.pdf.

VanEssenDC-2002

DC Van Essen. Surface-based atlas of cerebellar cortex in human, macaque, and mouse. Annals of the New York Academy of Sciences, 978:468–479, December 2002. URL: http://brainvis.wustl.edu/resources/VE_ANYAS02.pdf, PDF: VanEssenDC-2002.pdf.

WitterL+4-2016

Laurens Witter, Stephanie Rudolph, R. Todd Pressler, Safiya I. Lahlaf, and Wade G. Regehr. Purkinje Cell Collaterals Enable Output Signals from the Cerebellar Cortex to Feed Back to Purkinje Cells and Interneurons. Neuron, 91(2):312–319, July 2016. URL: https://linkinghub.elsevier.com/retrieve/pii/S0896627316302483, doi:10.1016/j.neuron.2016.05.037, Notes: WitterL+4-2016.html.